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Truly I begin to understand that although logic is an excellent instrument to
govern our reasoning, it does not compare with the sharpness of geometry in
awakening the mind to discovery.

—Galileo
(said by Simplicio in Dialogs Concerning Two New Sciences)
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Welcome to Zome Geometry! We have found the Zome System to be a
wonderful tool.With it, we have deepened our understanding of many
geometric ideas in two, three, and even four dimensions—especially, but 
not exclusively, ideas about polyhedra. In this book, we share our favorite
activities with students, teachers, and, in fact, any interested reader.

How to Use Zome Geometry
This book can be used in several ways.

Zome Geometry activities supplement the secondary curriculum.The
prerequisites and the specific curricular connections (from geometry,
trigonometry, algebra, and more) are listed in the teacher notes at the
beginning of each unit. Some activities preview or introduce the
corresponding topics; others are more suited for the review or
application of previously studied topics; and many will work both ways.

Zome Geometry can serve as the textbook for a mathematics elective
course.

You can use Zome Geometry as a source of projects for math teams, math
clubs, or individual students.

Anyone who wants to explore geometry on his or her own can use
Zome Geometry as a self-instruction manual. Read the answer only after
working on a question, and make use of the teacher notes as you work
through the activities.

The time that students invest in laboratory-style activities deepens their
understanding and increases their motivation to study geometry.As with
laboratory exercises in a science course, the Zome Geometry activities provide
directions and insightful questions but leave key observations and discoveries
to the explorer.

How Zome Geometry Is Organized
Each unit focuses on a specific content area and is divided into lesson-size
activities. Each activity starts with a Challenge, which students can explore
on their own. Preferably, they will do this without access to the rest of the
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xii Zome Geometry

activity, which often answers the Challenge.The Challenge is intended 
to lay the groundwork by posing a question that will be developed in the
guided activity. In some cases, the Challenge is very difficult, and you will
need to decide how much time you want to allot for it. Each unit ends
with Explorations, which expand or deepen what students have learned 
in the core of the unit.

If students have built a structure, do not assume that they understand
everything about it.While the hands-on work is very helpful in seeing
relationships, students may have trouble focusing on concepts while they are
building.There are two types of exercises in the core activities—building
prompts (1, 2, . . .) and Questions (Q1, Q2, . . .).The Questions give students
a chance to reflect, and they increase the likelihood that students will make
interesting discoveries while building. Depending on the availability of 
time and materials, students may do the building exercises in the order 
given, or they may do a certain amount of building, and then go back 
to answer Questions. In any case, for students to take full advantage of 
Zome Geometry—and to enable what they learn to transfer to other parts 
of their mathematical world—it is essential that they come up with 
written, thoughtful answers to the Questions.Their answers may follow 
or generate small-group or whole-class discussions.

In general, it is best to keep models intact as long as possible and to keep
them within reach of the students. If models need to be stored overnight
and shelf space is limited, they can be hung on paper-clip hooks. If you
have easy access to a camera, taking pictures of models can be a useful way
to document progress and to create records that can be referred to when
working on later activities. In some cases, taking photos of half-completed
structures yields images that are easier to decipher than pictures of
completed projects.

The Explorations that close each unit, and the additional unit of Explorations
that closes the book, tend to require more time and materials than the other
projects.Their mathematical level is often a bit higher than that of the core
part of the activity. Hence, they are well-suited for term papers, extra-credit
projects, or challenges for the more ambitious students in a class.

About the Materials
The zomeball is designed with rectangular holes for blue struts, triangular
holes for yellow struts, and pentagonal holes for red struts. Green and 
green-blue struts, which also fit into the pentagonal holes, have been added
to the Zome System, so that Zome models of all the Platonic solids can be
built.An illustrated list of the strut names is given on page 265.You may
want to photocopy this page and display it for reference. Blue, yellow, red,
green, and green-blue struts are all available in the special Creator Kit
designed for this book and distributed by Key Curriculum Press. If you
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already have Zome materials, green struts can be purchased separately. In this
book, we will refer to both the green and green-blue struts as green.

The green struts are challenging to use. Builders should have practice 
with the blue, yellow, and red struts before they face the challenge of
distinguishing between the five different angles that the green struts can fit
into a given zomeball pentagonal hole. Follow the instructions in the teacher
notes for Unit 3 as you and your students learn to build with the green struts.
Most of the activities can be done without the green struts, however. Many
involving regular tetrahedra and octahedra made with green struts can be
approximated with non-green tetrahedra and octahedra.

The special Creator Kit with green struts includes enough pieces to build all
but the most complicated models and the big domes.This kit will be enough
for two or three groups to work on many of the activities. However, if you
want to build the more complex models or to divide the class into four or
more groups, you will need two kits.The index of polyhedra on page 259
indicates the Zome materials required to build each model. Use this list to
help you figure out if you have enough materials for a given activity.To
conveniently distribute materials at the beginning of class, and to clean up at
the end, you may organize your struts and balls in labeled resealable plastic
bags.You should have as many bags for each type of strut as you have groups
of student builders.

Many of the complex models will take some time to build. If several models
are built during an activity, you can conserve Zome materials and time by
having each group build a different model and then share the models as
students answer the Questions.Also, it is often possible to conserve materials
by having different groups of students build the same models in different sizes.

About Frequently Built Polyhedra
Some polyhedra are studied again and again throughout the book. Students
will learn to build them quickly. If you embark on an activity out of
sequence, however, students may encounter an unfamiliar polyhedron whose
building instructions were in a skipped activity. In such cases, consult the
index of polyhedra, which lists in bold the activity or activities that contain
the building recipe for each polyhedron.

About Numerical Answers
When appropriate, require that students give both calculator-generated
numerical answers with reasonable accuracy, such as 1.618, and 

mathematically exact answers, such as .The former are important if

students need to know the magnitude of a number, as for comparison
purposes.The latter are important because, in many cases, they facilitate
communication and deepen understanding of mathematical relationships.

1 + �5�
�2
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About Proof
We strongly believe that students should be introduced to formal
mathematical proof, but that is not the only thing that needs to happen in
math class. Because this book will be used as a supplement to a wide range of
math classes, with students at many different ages and levels of mathematical
maturity, we have not emphasized formal proof.

Instead, the main purpose of Zome Geometry is to introduce students to a
beautiful part of geometry, to reinforce their visual sense and spatial intuition,
to give them a chance to apply ideas they have learned in other math classes,
and to make interesting connections between different areas of mathematics.

We do consistently ask students to reason about the figures they build—a
necessary prerequisite to formal proof. Moreover, a few important activities
lead students through logically tight arguments about the mathematical
properties of the Zome System (see Units 7 and 13) and about three
fundamental theorems concerning polyhedra (see Activities 3.3, 24.1,
and 24.2).

About the Authors
George W. Hart (http://www.georgehart.com) is an artist and mathematician.
Henri Picciotto (http://www.picciotto.org/math-ed) is a mathematics
teacher at the Urban School of San Francisco and a curriculum developer
specializing in hands-on materials.

A list of updates and corrections for Zome Geometry will be available at
http://www.georgehart.com.

We hope that you not only learn from this book, but also have a very 
good time.

Introduction
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Angles, Polygons, Polyhedra

Students are introduced to the Zome System and its notation.They become
familiar with the zomeball and struts and learn which polygons can be built.
Then they begin to build in three dimensions and learn how to scale Zome
models to produce a similar polyhedron.

Goals
To become familiar with the Zome System and the notation used
to refer to the components

To discover some of the angles in the Zome System

To build regular polygons (3, 4, 5, 6, 10 sides)

To explore the structure of prisms, antiprisms, and pyramids

To investigate scaling Zome polyhedra

Prerequisites
Students need to know about the angles of a regular n-gon.

Notes
These models are small and can be made with the red, blue, and yellow struts
from any Zome System set. Do not use the green struts until Unit 3.

If your students are not familiar with the angles of regular polygons, use the
following discussion to introduce exterior angles.

A regular n-gon has an exterior angle of 360⁄ n.This can be explained
with the following argument. Imagine you are driving a car along the
edges of a polygon.At each corner you make a sharp turn, which is the
exterior angle at that vertex. For example, if you are driving around a
regular hexagon, each turn is 60 degrees. (0 degrees means you don’t
turn, you just go straight.) When you return to your starting point and
turn to face the same way as when you started, you have made one
complete revolution, that is, 360 degrees of turns. Since there are 
n equal turns, each turn is 360⁄ n degrees.
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You may illustrate this argument by making a
Zome equilateral triangle, with each side
extended as in the figure.A regular pentagon
or hexagon would work just as well, but avoid
the square as a first example, as its interior and
exterior angles are equal.

Make sure students realize that, at any vertex,
the interior and exterior angles add up to 
180 degrees.

1.1 Angles and Regular Polygons

Most of the work in this book involves regular polygons, so this introduction
is essential.These activities also preview later work on Zome symmetry. Make
sure students understand that a regular polygon has equal sides and equal
angles and that the angle relationships in the starburst correspond to those in
a regular polygon. Suggest that different students build the polygons in
different sizes.Advise students to keep the polygons they make, as they will
need them later in this unit.

The regular 8-gon requires green struts and is covered in Unit 3.An
understanding of why other polygons such as the 7-gon, 9-gon, and 11-gon
cannot be constructed with the Zome System follows from the tabulation of
all Zome-constructible angles in Unit 13.

1.2 Prisms, Antiprisms, and Pyramids

The activity begins with informal definitions.You may want to mention
that the Egyptian pyramids are regular 4-gonal (square) pyramids.

This is the first of many opportunities to count vertices, edges, and faces
of polyhedra.As students determine these numbers, encourage them to
use logic and think of the structure of a Zome model, rather than count
items one by one.

1.3 Zome System Components, Notation, and Scaling

As students become familiar with the zomeball, be sure they notice that for
two connected balls, struts inserted in corresponding holes in the two balls
will be parallel.Although only certain directions are possible, the set of
directions is the same on every ball.

2 Unit 1 Angles, Polygons, Polyhedra Zome Geometry
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Challenge
Determine which different regular polygons can be made with the blue,
red, and yellow struts of the Zome System. Don’t consider different
sizes, just different shapes.

1. Take a zomeball and put it on the table so that it is resting on a
pentagonal hole. It will also have a pentagonal hole facing straight 
up, since each hole is opposite another hole of the same shape.Think
of the bottom and top pentagonal holes as south and north poles.
Stick ten blue struts (any size) into the ten rectangular holes along
the equator.They will all be horizontal, defining a flat “starburst” of
ten equally spaced rays.

Q1 With a pentagonal hole at the pole, what is the angle between
consecutive equatorial struts? 

2. Put a triangular hole at the pole, and make a starburst along the 
new equator.

Q2 With a triangular hole at the pole, what is the angle between
consecutive equatorial struts?

3. Put a rectangular hole at the pole, and make a blue starburst along the 
new equator.

Q3 With a rectangular hole at the pole, what is the angle between
consecutive equatorial struts?

Q4 Describe the pattern in the relationship between the number of
rays in each starburst and the shape of the hole at the pole.

Q5 Using the angles you found in Questions 1, 2, and 3, you
should be able to make regular n-gons for five different values
of n.What are the values of n?

4. Build any kinds of regular polygons you didn’t already build during
the Challenge. Look for polygons with different shapes, angles, and
numbers of sides.You don’t have to build different sizes.

Q6 Place the regular polygons on the table, and make a chart
relating the shape of the hole at the zomeball pole with the
corresponding n.

A more advanced study of zomeball angles shows that there are no other
regular polygons constructible with the red, yellow, and blue struts.The
regular 8-gon will be constructed using the green-blue struts.

Angles and Regular Polygons1.1
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Challenge
Determine which right prisms, which antiprisms, and which pyramids
can be built with the Zome System.

A three-dimensional analog to the polygon is a prism.
A right prism is shaped something like a drum, but with
an n-gon (instead of a circle) for top and bottom and
rectangles around the sides.An antiprism is a fancier
kind of drum-shaped polyhedron. It also has an n-gon
as top and bottom, but they are rotated with respect to
each other so that the vertices of the top one are
between the vertices of the bottom one.The sides of
an antiprism are triangles instead of rectangles.

An n-gonal pyramid has an n-gon for a base and 
n triangles for sides.The vertex where all the triangles
meet is called the apex.

1. Make a regular pentagon for a base (use any size
of blue struts).Then place a red strut (any size, but
all five the same) into the north pole of each of
the five zomeballs.Top each red strut off with
another zomeball, and connect them to make 
a second regular pentagon.Your pentagonal 
prism is a three-dimensional solid bounded by
two pentagons and five rectangles.The shape 
of the rectangle depends on which size struts 
you chose.

2. Make a prism using a triangle, a square, a hexagon, or a decagon as
base. (The sides will be rectangles, and, in the case of the square base,
they can be squares.) Make a prism different from your neighbors’.

Q1 Build a square prism with square sides.What is another name
for this polyhedron? 

A vertex is a corner of a polygon or polyhedron where the edges meet. It
is represented by a zomeball.The plural of vertex is vertices.

Q2 For an n-gonal prism, write formulas that involve n: for the
number of vertices, for the number of edges, and for the
number of faces.

Prisms, Antiprisms, and Pyramids1.2
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3. Make a pentagonal antiprism: Connect the top and bottom pentagons
by a zigzag of edges, making ten equilateral triangles, half pointing up
and half pointing down. (If you have trouble doing that, turn your
base pentagon upside down.)

There are five different shapes of pentagonal antiprisms that you can
make with the lengths and angles in the Zome System.They differ
according to how far you raise the top pentagon and which size strut 
you use to connect the two pentagons.

4. With your neighbors, make the other four Zome pentagonal
antiprisms. Look for different shapes and angles, not different sizes.
The zigzag might be red, yellow, or blue. (Hint: One is very short.
Remember that turning over your first pentagon may help.)

5. With your neighbors, build five different shapes of triangular
antiprisms.The zigzag might be red, yellow, or blue.

Q3 For an n-gonal antiprism, write formulas that involve n: for 
the number of vertices, for the number of edges, and for the
number of faces.

6. Make a Zome square pyramid.

Q4 How many different Zome pyramids
can you make on an equilateral
triangle base? (Hints:Try a base made
with the medium-size blue strut.
Once you have exhausted the
possibilities with one side of the base
up, turn the base over.)

Q5 How many different Zome pyramids
can you make on a regular 5-gon
base?

Q6 For an n-gonal pyramid, write formulas that involve n: for the
number of vertices, for the number of edges, and for the
number of faces.

Prisms, Antiprisms, and Pyramids (continued)1.2
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Challenge
Make antiprisms in four different sizes, but with the same angles.

In making prisms, you relied on an important property that is designed into the
Zome System:Whenever balls are connected, they have the same orientation.
As a result, you can always construct a line parallel to any given strut from any
other connected ball.

Q1 Hold up a zomeball and look into a rectangular hole, through the
center of the ball, and out the opposite rectangular hole. Notice that
the long sides of these two rectangles are parallel. Do the same with a
triangular hole and a pentagonal hole.What do you notice?

Q2 Hold any blue strut vertically and examine it. Notice that, disregarding
the ends that fit into the zomeball, it can be seen as a tall prism with a
rectangular base. Do the same with any yellow strut and any red strut,
and notice that each is composed of the connecting ends and three
distinct structures in a stack.What are the three distinct structures of
these struts? 

Q3 Describe what the twists in the red and yellow struts have to do with
the zomeball.

The struts are named as shown in the figure, with b for blue, r for red, and y for
yellow. For each color, there are three sizes, which are numbered 1, 2, and 3.

Zome struts

Scaling a polyhedron can be done by adding 1 to each size of strut. For
example, if you made an antiprism using b2s for the pentagons and r1s for the
zigzag, the next larger size uses b3s and r2s in the corresponding places.When
scaling a figure, be sure that angle measures are unchanged! 

1. Pick one of the five pentagonal antiprisms you made, and make one similar
to it, but scaled up or down one size.

b1

b2

b3

y1

y2

y3

r1

r2

r3

Zome System Components, Notation, and Scaling1.3
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Another approach to scaling is to double (or triple, and so on) the
number of struts on each edge. For example, if you had edges of 
length b2, connect two b2 struts with a ball, and use length 2b2 for the
corresponding edges in the scaled polyhedron.

Q4 Visualize the shape of a cross section of a pentagonal antiprism
halfway up between the base and the top.What kind of polygon
is it?

2. Build a model that explicitly shows this cross section. Pick any one of
the five pentagonal antiprisms and build it in double scale.The balls
at the halfway points of the zigzag struts are just where you need
them to make the cross section.

3. Make a triangular antiprism in double scale to show its cross section
halfway up.

Q5 In general, what polygon do you see if you slice an antiprism
with a cut parallel to and halfway between its n-gons?

Q6 Explain why you cannot use the Zome System to make an
antiprism with a 6-gon or 10-gon base.You may assume that
12-gons and 20-gons are not Zome-constructible.

Zome System Components, Notation, and Scaling (continued)1.3
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A. Skew Polygons A regular skew polygon is a polygon with equal sides
and equal angles that does not lie in a plane. Instead, its vertices lie on
an imaginary cylinder, in two parallel planes. Make a cube and let it
hang down from a vertex; notice that around its “equator” is a regular
skew hexagon.The zigzag of an antiprism is a regular skew polygon.
How many different kinds of regular skew polygons can you build
with the Zome System? 

B. Nonright Prisms The prisms you made are right prisms because the
edges connecting the two n-gons are at a right angle to the plane of
the base. Find some Zome nonright prisms.

C. Another Cross Section What is the cross section of an antiprism one
third of the way from one base to another?

D. Rhombic Pyramids A rhombus is a planar 4-gon with equal sides,
but the angles do not need to be equal.The plural of rhombus is
rhombi. Find four different kinds of blue rhombi, meaning that they
have different angles from each other.A square is one of the four,
since it is a special kind of rhombus.You should be able to determine
the angle in each of your four blue rhombi.There are also one kind
of red rhombus and two kinds of yellow rhombi. Build them.
A rhombic prism is easy to build; as more of a challenge, can you
make a pyramid on each of your rhombi? (The apex need not be
directly over the center of the rhombus.)

E. Concave Antiprisms The prisms and antiprisms above are all
convex—they have no indentations.You can also make a symmetric
concave antiprism. Start by making a 5-gonal antiprism with 
b1 pentagons and b1 slanting edges. (Its ten sides are equilateral.)
Think of the zigzag as a cycle of ten struts numbered 1, 2, 3, . . . , 10,
and remove the odd-numbered ones.That creates five openings,
each like a rhombus, but not planar. Put in a b2 as the long diagonal
of each “rhombus.” Describe the result. How is it like and unlike 
the other pentagonal antiprisms?

Explorations 1
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Icosahedron and Dodecahedron

Students are introduced to the icosahedron and dodecahedron and use these
regular polyhedra to explore the effects of scaling.

Goals
To learn about the structure of the icosahedron and dodecahedron

To understand proportionality of similar polyhedra

To become familiar with other polyhedra related to the icosahedron 
and dodecahedron

Prerequisites
The first part of this unit has no prerequisites. Familiarity with the concept
of similarity and scaling is necessary for the second half, although it is also
possible to do the unit while first studying similarity and scaling.

Notes
The word polyhedron was used in Unit 1 without a definition.There are
many ways to define it. Since the Zome polyhedra are frameworks of edges
and vertices, this book emphasizes the vertices and edges as determining the
polyhedron. However, the word polyhedron suggests a definition that
emphasizes the faces such as “a solid bounded by plane polygons.”The names
of specific polyhedra also emphasize the face.You can introduce the words
icosahedron and dodecahedron as coming from the Greek icosa meaning 20,
dodeca meaning 12, and hedron referring to the faces.

The polyhedral constructions in this unit involve building some scaffolding
or intermediate structure as an aid to constructing the final form. In the end,
the scaffolding is removed and just the intended polyhedron remains. If
students see the pattern that develops after making some of the scaffolding, it
is not necessary to make all the scaffolding; they can just continue the pattern
to make the final form. If students get confused, they can go back to
including the scaffolding.
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Several of the polyhedra in this unit take considerable time and material.
Student groups should make the first icosahedron and dodecahedron in
different sizes.Then the groups’ models can be saved and combined to build
the larger structures in Activity 2.2.

2.1 Building and Counting

Instead of using the scaffolding strategy, you may suggest that students
use what they learned in Unit 1 about regular polygons in order to build
the faces.

The relationship between the numbers of faces, edges, and vertices will
be discussed in Unit 6, and the answer to Question 6 will be explored
further in Unit 9.

2.2 Scaling

This activity reviews the basic concepts of similarity and scaling, and
previews the additive relationship between the Zome struts, which will be
pursued in Unit 7.

Remind students that in making similar polyhedra, all lengths scale by the
same amount.These include

the distance between opposite faces

the distance between opposite vertices

the distance between opposite edges

Students can see all three of these scaling relationships at once with the
construction of concentric dodecahedra.

In a b1 icosahedron, the distance between opposite vertices can be built with
two r1s, and the distance between opposite edges can be built with a b2.
However, there is no Zome length for the distance between the opposite
faces of this icosahedron.You may discuss scaling by having students insert
the appropriate struts in different-size icosahedra to show these lengths and
their relationships.

The challenge is difficult. It is answered in Question 3.The scaled
dodecahedra on the color insert display the answer for a similar question
about the dodecahedra.

Explorations 2

After making any of these polyhedra, students should count the number of
faces, edges, and vertices, and record the numbers for discussion in a future
lesson.You may want to keep a class list of all the polyhedra students build,
recording the name or description of the polyhedron, F, E,V, and perhaps
the name of the student builder.

10 Unit 2 Icosahedron and Dodecahedron Zome Geometry
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Challenge
The icosahedron consists of 20 equilateral triangles.The dodecahedron consists
of 12 regular pentagons. Build them both.

Icosahedron and dodecahedron

1. If you did not succeed in building it on your own, here is a method to build
the icosahedron using red struts as scaffolding. Make a three-dimensional
starburst by putting red struts (all the same size) in all the pentagonal holes
of one zomeball. Put another zomeball on the end of each red strut and
connect them with blue struts.The blue is the icosahedron, so remove the
red struts and the central ball.

Q1 For the icosahedron, give the number of faces, edges, and vertices.

Q2 How many edges does each face have? How many edges meet at 
each vertex? 

Q3 Notice how the icosahedron can be seen as an antiprism with 
two pyramids glued on. In how many different ways can you find 
a pentagonal antiprism in an icosahedron?

2. If you did not succeed in building it on your own, here is a method 
to build the dodecahedron using yellow struts as scaffolding. Make a 
three-dimensional starburst by putting yellow struts (all medium or all 
large) in all the triangular holes of one zomeball. Put another zomeball 
on the end of each yellow strut and connect them with blue struts.The 
blue is the dodecahedron, so remove the yellow struts and the central ball.

Q4 For the dodecahedron, give the number of faces, edges, and vertices.

Q5 How many edges does each face have? How many edges meet at 
each vertex? 

Q6 Compare the numbers of faces, edges, vertices, edges on each face,
and edges that meet at each vertex in a dodecahedron to those in 
an icosahedron.

Building and Counting2.1
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Challenge
Which is taller: a b3 icosahedron or a b1 icosahedron stacked on top of 
a b2 icosahedron?

1. Make a Zome model of two regular pentagons, such that pentagon B’s edge
is twice as long as pentagon A’s. Include a diagonal in pentagon A.

Q1 Predict the size of the diagonal in pentagon B.

2. Check your prediction by building the diagonal.

Q2 What is the scaling factor, or ratio of similarity, between pentagon B
and pentagon A? 

3. Combine two (or even three) dodecahedra with different edge lengths,
smaller inside larger, with a common center. Use some radial yellow struts,
as in the starburst, to connect them.Adding a ball at the very center and
just two radial struts to the inner dodecahedron, construct and point out
similar triangles.

If your eyes were at the center, your views of the dodecahedra would exactly
overlap.The scaling factor (ratio of similarity) is b3/b2 or b3/b1 or b2/b1, depending
on which pair of dodecahedra you are discussing.

4. Build small and medium
icosahedra that touch at only one
point, side-by-side inside a large
icosahedron. (Hint:The b1 and 
b2 icosahedra have one vertex in
common and are built on
diametrically opposite sides of
that vertex.At the vertices farthest
from the common vertex, you
need to extend the b1 and b2

triangles into b3 triangles.To do
this, notice that you can make a 
b3 edge by connecting a b1 and a
b2 in a straight line: b1 + b2 = b3.) 

Q3 Hold your model three ways, standing it on a vertex, a face, and an
edge. Describe how the sum of the small and medium add to the large
for each distance between faces, between edges, and between vertices.

5. If you have time, you can make an analogous compound (small and medium
sharing a vertex inside large) for the cube and the dodecahedron.

Scaling2.2
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Each of the following constructions leads you to another polyhedron
related to the icosahedron and dodecahedron.After making any of these
polyhedra, count the number of faces, edges, and vertices, and record the
numbers for discussion in a future unit.

A. Nonregular Icosahedron Instead of using 30 blue struts, make 
an icosahedron using 10 blue, 10 red, and 10 yellow.This is a
nonregular icosahedron, made of 20 triangles, but not equilateral
triangles. It has the same topology as the regular icosahedron (the
same number of edges, faces, and vertices, and they are connected
in the same way) but different geometry (lengths and angles).There
are several solutions.

B. Nonregular Dodecahedron Now make a nonregular dodecahedron
from 10 blue, 10 red, and 10 yellow struts, topologically the same as
a regular dodecahedron, but geometrically different.Again, there are
several solutions.

C. Elevated Dodecahedron Take a regular dodecahedron and erect a
blue pentagonal pyramid on each face.You need to use the next
larger size strut (such as b2 struts on a b1 pentagon or b3 struts on a 
b2 pentagon), so the original dodecahedron must be small or
medium, not large.You will be adding a new ball outside the middle
of each face.When done, you have a nonconvex polyhedron
consisting of 60 isosceles triangles.

D. Concave Equilateral Deltahedron Build a dodecahedron and erect
a blue pentagonal pyramid on the inside of each face.You will be
adding a new ball slightly inside the middle of each face.When
done, you have a polyhedron consisting of 60 equilateral triangles.
Deltahedron means made of triangles, not necessarily equilateral.

E. Rhombic Triacontahedron 1 Build an icosahedron and erect a
shallow red triangular pyramid on the outside of each face.You need
to use the next smaller size strut (such as r1 struts on a b2 triangle), so
the original icosahedron must be medium or large, not small.You will
be adding a new ball slightly outside the middle of each face.Then
remove the icosahedron.What is left will have rhombic faces.

F. Rhombic Triacontahedron 2 Build a dodecahedron and erect a
shallow red pentagonal pyramid on the outside of each face.You
will be adding a new ball slightly outside the middle of each face.
Then remove the dodecahedron.This gives the same result as the
method in E!

Explorations 2
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The Platonic Solids

With the green struts, students can build the two remaining Platonic solids,
the tetrahedron and the octahedron. (Without the green struts, they can build
approximations of these two regular polyhedra.) Then students prove there
can be only five completely regular polyhedra and explore shapes made from
truncating the Platonic solids.

Goals
To become familiar with the green struts

To learn more about the Platonic solids

To see some interrelationships between the Platonic solids

To prove that there are only five Platonic solids

To begin to learn about some Archimedean solids

Prerequisites
Units 1 and 2

Notes
As a preparation for this unit, students can make paper models of all 
five regular polyhedra (sometimes called the Platonic solids). Since they 
have built the dodecahedron and the icosahedron in Unit 2 and the cube in
Unit 1, they should make paper models of at least the tetrahedron and the
octahedron by cutting out equilateral triangles from heavy paper and taping
them together along the edges.They can also become familiar with these 
five regular polyhedra by drawing them.

3.1 Green Polygons

The green struts (green refers to both green and green-blue struts) work
differently from the other types of struts.They do not extend straight out of
a hole specific to them.They fit into the holes designed for the red struts
(the pentagonal openings) and tilt at an angle. Make sure your students
understand that, like the other struts, the green struts model straight line
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segments.The purpose of the tilt at the end is to make it possible to aim the
struts in a direction that is unavailable as a hole in the zomeball. Carefully
point out that when two green struts are extensions of each other on either
side of a zomeball, they are correctly aligned, in spite of the little zigzag that
can be seen near the ball.

There are five ways to rotate a green strut in any of the 12 holes designed 
for red struts, and therefore a green strut can point in any of 60 directions.
Because there are so many possibilities, and because only one of the 
five possibilities can be used in a model at one time, green struts can be 
tricky. Point out that when a green strut is inserted into a zomeball, it has a
pointy side that lines up with a vertex of the pentagonal hole and a flat side
that lines up with a side of the pentagonal hole.A fine point that students may
appreciate after making the regular octahedron is that the sides of the strut (if
you think of it as a tall rhombic prism) are in the planes of the octahedron’s
faces. Knowing this helps students rotate the strut properly when making 
60-degree angles without scaffolding.

In this unit, blue struts are used as scaffolding whenever a green strut is
needed.This works because every green strut is the hypotenuse of an isosceles
right triangle with blue legs.

Most of this book does not require green struts.The exercises that do use
green struts say so explicitly.Alternate versions of those exercises are often
given.The first activity is a necessary introduction to the green struts.

3.2 The Regular Tetrahedron and Octahedron

Once students complete this activity, they will be able to build Zome models
of all five Platonic solids.These models are pictured on the color insert.

3.3 Only Five Platonic Solids: A Proof

You may want to share with your students some history of the Platonic solids.
The ancient Greeks discovered that there are exactly five polyhedra with the
following properties:

Each face is a regular polygon.

Each face is identical.

Each vertex is identical.This is a shorthand way of saying that at each
vertex, the same kind and number of faces meet in the same way.

Plato wrote about the regular polyhedra in his book Timaeus, from which they
received the name Platonic solids. In The Elements, Euclid wrote about them
and proved that there are only five.

Several students can collaborate to build the models that satisfy the Challenge.

3.4 Truncation

There are many interrelationships between polyhedra. In this unit, students
encounter one: the truncation of one polyhedron to form another one.
Truncation can be thought of as slicing off the corner of the solid.The
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Teacher Notes

figure on the activity page shows the truncating of one corner of a cube to
create a new triangular face and change the three squares that met at that
face into irregular pentagons.You may want to explain to students that if 
X is a polyhedron, then a truncated X is a new polyhedron formed by
truncating all the corners of X. Ask them to visualize a truncated cube. It
has eight triangular faces (corresponding to the eight vertices of the cube)
and six 8-gon faces because six 4-gons change into 8-gons when four
vertices are truncated.

A related process is called truncating to the edge midpoints. This involves taking
a deeper cut, down to the midpoints of the edges, so that the new faces
meet at vertices.

The truncated Platonic solids are examples of Archimedean solids; they will
be seen again throughout this book, especially in Unit 12.



Challenge
Use eight identical green struts to build an equilateral square pyramid.

1. To make an isosceles right triangle, make a right angle of two b1s and 
three zomeballs.A g1 fits as its hypotenuse.

The shorter green strut is the length of a b1 and is called a gb1 strut. (Because
green and green-blue struts have the same shape, the word green refers to either.)

2. To make a green square, make a 2b1 square and connect the four edge
midpoints with g1s. Notice that green squares are rotated 45 degrees from
the blue squares.

3. To make a green and blue starburst, place eight struts into a zomeball so that
they lie in a plane, separated by 45 degrees.

4. To make a green equilateral triangle, put three b1s into one zomeball so that
they are mutually perpendicular, that is, like one corner of a cube. Make the
three right angles into three isosceles right triangles with g1s. Removing the
blue leaves just a green triangle.

5. To make a green regular hexagon, first make a 2b1 cube. Find and construct
a green slice of it that makes a hexagon. (Hint: It may help to rest the cube
on a vertex, with a long diagonal vertical.)

Q1 Where do you add green struts so that, when you eliminate the blue,
what remains is a regular hexagon?

6. To make a green 60-degree starburst, place six green struts into a zomeball
so that they lie in a plane, separated by 60 degrees. Notice that three of the
red holes are slightly above the plane and three are slightly below it.The
green struts tilt down when starting in a hole too high and tilt up when
starting in a hole too low.

7. To make an irregular octagon, make a 3b1 square and cut off each corner
with a g1 diagonal.Then remove the corner blue struts so that just an 8-gon
remains. Cutting off the corners of a polygon is called truncation.

8. Noting the orientations of the blue and green struts in your irregular 8-gon,
make a copy of it, but with gb1s instead of g1s.

9. Construct another green square, green equilateral triangle, green regular
hexagon, and regular octagon, but this time do not use blue struts as
scaffolding. For the octagon to be regular, gb1 struts must be used, but the
other polygons can be made with any size of strut.

Q2 All of these green polygons can be raised into prisms. However, with
the Zome lengths, only two can be made into a prism with square
faces on the sides.Which ones?

Green Polygons3.1
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Challenge
Build a regular tetrahedron and a regular octahedron using green struts.All
faces of both solids are equilateral triangles.

1. Use green struts to build a regular tetrahedron. First make a 
b1 square and insert a g1 as its diagonal.Then extend this into a
blue cube with one green diagonal in each of the cube’s faces,
forming a green tetrahedron. Remove the cube edges so that only
the tetrahedron remains.

If you do not have green struts, a triangular pyramid with b1 base and
r1 sloping edges approximates a regular tetrahedron. (The apex angle
of the red and blue isosceles triangles is about 63 degrees, close to 60.)

2. Use green struts to build a regular octahedron. First, make a
perpendicular blue starburst—that is, six b1 struts in one ball—forming
three mutually perpendicular lines (like x, y, z axes).Add six balls at
the ends. Connect the 12 right angles with 12 g1 diagonals to make a
green octahedron.

If you do not have green struts, a triangular antiprism with two
equilateral b1 triangle bases and an r1 zigzag approximates the regular
octahedron.

Q1 The regular octahedron is a special equilateral case of what type
of polyhedron? 

Q2 The edges of the regular octahedron can be viewed as forming
what polygons besides triangles and in what arrangement?

3. The tetrahedron in the cube uses only half the vertices of the cube,
four of the eight. If you use the remaining vertices, there is a second
tetrahedron in the same cube. Using green struts in a double-scale
cube, make a model of two tetrahedra in a cube. First, make a green
X inside a 2b1 square. Expand this into a 2b1 cube with a green X in
each face. Notice how the two tetrahedra pass through each other,
crossing at their edge midpoints.

4. To make a compound of two tetrahedra, remove the blue cube edges
to leave just two intersecting tetrahedra.This is usually called the 
stella octangula, Latin for “eight-pointed star.” Each point of each
tetrahedron pokes through a face of the other tetrahedron. (To have
your stella octangula stand up on a point, place three r1s into one
vertex, forming a tripod stand.)

Q3 Visualize the shape that is the intersection of these two
tetrahedra.What shape is it?

The Regular Tetrahedron and Octahedron3.2
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5. Connect the crossing points of your stella octangula with 12 green
struts to construct the intersection of the two tetrahedra. Notice that
your model can now be seen as an octahedron surrounded by eight
small tetrahedra.

6. Remove four small tetrahedra to leave one large tetrahedron.This
shows how a tetrahedron can be dissected into an octahedron and
four smaller tetrahedra.

(Here is an alternate approach to the stella octangula, without green
struts.A bx equilateral triangle with three rx edges added makes a
triangular pyramid that is almost a regular tetrahedron.You can choose x
to be 1, 2, or 3. Make this in double-scale (2bx base and 2rx slanting edges)
and connect all the edge midpoints.The central region is almost a regular
octahedron, and it is surrounded by four small nearly regular tetrahedra.
Add four more blue and red tetrahedra to the octahedron to make a
nearly regular stella octangula.You can see the almost-cube it sits in,
but you cannot build its edges, as the Zome System does not include
directions that would go straight from one “cube” vertex to another in
this structure.)

7. The regular tetrahedron can be sliced into two equal parts to reveal a
square cross section. Make a model of this.

The Regular Tetrahedron and Octahedron (continued)3.2
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Microscopic radiolarian skeletons sometimes take the
form of Platonic solids. Drawing by nineteenth-century
naturalist Ernst Haeckel. 

Source: Hermann Weyl, Symmetry. Copyright © 1946, renewed 1952.
Reprinted by permission of Princeton University Press.



Challenge
Build polyhedra that are almost Platonic, in that each one violates only one 
of the three required properties. (Each face is a regular polygon; each face 
is identical; and at each vertex, the same number of faces meets.) 

Q1 Make and fill out a table like this:

Q2 Looking at the table, notice how the icosahedron and dodecahedron
are a pair in certain respects. Name the other two that are a pair in an
analogous way, and describe the partner of the remaining one.

To prove that there are only these five possibilities, think about the sum of the
angles at each vertex and examine the first two columns of the table.The
notation {4, 3} designates a polyhedron whose faces have 4 sides with 3 faces
meeting at each vertex; {4, 3} refers to a cube, {5, 3} to a dodecahedron.

Q3 Explain why the entries in the first column must be at least 3. (Why
are 0, 1, and 2 not possible?)

Q4 Explain why the entries in the second column must be at least 3.
(Why are 0, 1, and 2 not possible?)

Q5 If there were a {3, 6} row, meaning 3-gons, 6 at each vertex, the result
would not be three-dimensional. Explain. (Refer to the sum of the
face angles at a vertex.)

Q6 There cannot be {3, 7}, {3, 8}, {3, 9}, and so on, polyhedra. Explain.

Q7 Why are {4, 4}, {4, 5}, {4, 6}, and so on, impossible?

Q8 Why are {5, 4,} {5, 5}, {5, 6}, and so on, impossible?

Q9 Why can’t the first number be 6 or larger?

Q10 Summarizing: Explain why the only possibilities with less than 
360 degrees at each vertex are the five polyhedra listed in the table.

Only Five Platonic Solids: A Proof3.3
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Challenge
Build a polyhedron, using blue and green struts, whose faces are equilateral
triangles and regular octagons. (Hint: Start from a triple-size cube and truncate
its corners to create new triangular faces.)

Q1 The octahedron has four faces meeting at
each vertex.What is the shape of the new
polygon that appears when one of its vertices
is truncated?

Q2 The octahedron has triangular faces.What is
the shape of the polygon that takes the place
of any triangle after its three vertices are
truncated?

1. Build a triple-scale octahedron. (If you have 
green struts, build a regular octahedron with 
3g1 edges; or, without green struts, build the
red/blue approximation with 3b1 and 3r1 edges.) 

2. Truncate one vertex of your triple-scale octahedron: First, add four
struts that connect the balls at the one-third points adjacent to that
vertex.Then remove the vertex and four struts connected to it. (The
new face should correspond to the answer to Question 1.)

3. Truncate the other five vertices. (The polygons that replace the triangles
should correspond to the answer to Question 2.) The result is the
truncated octahedron.

Q3 Describe the number and type of faces in the truncation of each
Platonic solid.

Q4 If a polyhedron X has F faces and V vertices, how many faces does
the truncated X have?

4. Build a cuboctahedron. First, make a double-scale octahedron (regular or
the red/blue approximation) so that there are balls at the edge midpoints.
Then truncate all six vertices to the midpoints of the edges so that the
new faces contact each other. (Add four struts around each vertex, and
then remove the vertex and the four struts it contacts.)

Q5 Visualize the result of truncating a tetrahedron to its edge midpoints.
What polyhedron results? If you have trouble with this, make a
double-scale tetrahedron and truncate it to the edge midpoints.

Truncation3.4
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A. Cross Sections The cube has a regular 6-gon cross section.What is
the largest regular n-gon cross section in each of the other Platonic
solids? (Hint: Each can be constructed with a double-scale model.)

B. Dissecting Irregular Tetrahedra Construct an arbitrary irregular
tetrahedron.Then make a double-scale model of it, and show how it
can be dissected into an irregular octahedron surrounded by four
smaller tetrahedra congruent to your original tetrahedron.Why is this
possible from any initial tetrahedron? 

C. Irregular Octahedra Construct an arbitrary irregular octahedron.
Find a tetrahedron of which it is the inner core. Is this possible from
any initial octahedron?

D. Parallelepiped Take a regular octahedron (or a red-blue
approximation), and add two tetrahedra, on opposing faces, to form 
a solid with six parallelogram faces, called a parallelepiped. Since
parallelepipeds can stack without gaps (like slanted bricks), can you
see that octahedra and tetrahedra must somehow stack to fill space
without gaps?

E. Plotting Polyhedra Another approach to the proof that there are
only five Platonic solids is to make a plot in which the point (x, y)
represents the polyhedron {x, y}, made of x-gons, y to a vertex. Plot
the curve

y�180 – �
36
x
0

�� = 360

Where the curve has integer values, they correspond to flat
constructions (360 degrees at each vertex); explain.The only possible
regular polyhedra are the integer points below the curve, but with
neither x nor y less than 3. Label the points for the regular polyhedra,
and notice how symmetric the plot is.What does the symmetry
correspond to?

F. Truncated Regular Polyhedra For each Platonic solid, X, construct 
a truncated X and/or an X truncated to its edge midpoints.Which
starting solids lead to the same results?

G. Regular Skew Polygons It is easy to find skew 10-gons in a
dodecahedron or an icosahedron.They are the zigzag “equators.”
In which Platonic solids can you find skew 6-gons? How about a
skew 4-gon?

Explorations 3
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Counting Strategies

It is important to be able to count the components of a polyhedron using
logic and symmetry rather than counting one by one.The icosahedron is used
to show two examples of counting strategies.

Goal
To improve ability to visualize and count components of a
complicated figure

Prerequisites
Units 1–3

Notes
This is a short, skills-oriented unit. Use the Challenge to set the stage, perhaps
encouraging students to work in small groups. If students disagree with each
other, encourage them to defend their answers with logical arguments.When
the groups have reached agreement, or have failed to reach agreement, hand
out Activity 4.1 and have students build the three models that are asked for at
the beginning.As students begin to see patterns, such as that the number of
faces in an icosahedron must be a multiple of five, logic will show them that
an answer of 19 obtained by counting could not be right.

Note that the use of algebraic notation, starting in Question 8, is intended to
encapsulate the understanding developed when working on the specific cases.
It would be pointless to teach students those formulas up front, and it is not
important for them to know these formulas by heart.They are easy enough to
re-create when they are needed.
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Challenge
Without looking at the actual polyhedra or your notes, make a table of the
numbers of edges, faces, and vertices of each of the five regular polyhedra.
Use logic to determine the numbers. It is OK to make sketches if that helps.

Here are logical methods for determining the number of edges, vertices, and
faces for the icosahedron.Visualize an icosahedron model balanced on a
vertex, and notice that there are five triangles around the top vertex, five
around the bottom, and ten around the “equator,” making a total of 20 faces.
The ten around the equator can be seen as five up and five down (like the
sides of an antiprism), so it should be immediately apparent that the number
of faces is a multiple of 5.

Counting the icosahedron’s vertices is even easier, because there are two
groups of five, and also the north and south poles, making 12 at a glance.

Q1 Describe how to count the icosahedron’s edges in groups of five.

Q2 Describe how to count the dodecahedron’s edges in groups of five.

Q3 Resting a cube on a face, describe how to count its edges in
groups of four.

Q4 Holding a cube up on a vertex, describe how to count its edges in
groups of three or six.

Starting from the fact that there are 20 triangles, and each has 3 vertices,
another method to count the icosahedron’s vertices is to multiply, 20 times 
3 equals 60. But since each vertex is shared by five triangles, vertices have
been overcounted by a factor of 5. So divide, 60 divided by 5 equals 12, to
get the answer.

Q5 Count the icosahedron’s edges using this multiplication-division
method. Be careful: How many triangles share an edge? 

Q6 Use the fact that the dodecahedron has 12 faces, and count its
vertices and edges.

Q7 Use the fact that the octahedron has eight 3-sided faces, meeting
four to a vertex, and determine the number of vertices and edges.

Q8 If a polyhedron has n faces, and each face has k edges, how
many edges does the polyhedron have? Check your formula
on the Platonic Solids.

Q9 If someone tells you that there are exactly 17 faces on a certain
polyhedron and that they are all triangles, what can you conclude?

Counting Strategies4.1
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Q10 If a polyhedron has n faces, each face has k edges, and each vertex
is shared by d faces, how many vertices does the polyhedron have?
Again, check your formula on the Platonic Solids.

Q11 Suppose a polyhedron has two types of faces.There are n1 faces
having k1 edges and n2 faces having k2 edges. How many edges
does it have?

Q12 If a polyhedron has v vertices and each vertex is an endpoint of 
d edges, how many edges are there altogether?

Counting Strategies (continued)4.1
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A. Visualizing Edges Consider the complex polyhedra in 
Explorations 2, and count their edges systematically without building
them. For example, the elevated dodecahedron is constructed by 
erecting a pentagonal pyramid on each face of a dodecahedron.
One can visualize that this adds 12 times 5 equals 60 new edges 
to the 30 dodecahedron edges already present, making 90 edges total.

B. That’s Odd For each of the polyhedra you have seen so far (the
Platonic solids, pyramids, prisms), how many faces are there altogether
with an odd number of edges (such as triangles and pentagons)? Is
that number even or odd? Either build a polyhedron with an odd
number of odd-sided polygon faces (for example, a polyhedron
whose only faces are five triangles and any number of squares), or
explain why it can’t be done.

C. Handshakes At a party, various people shake hands when saying
“hello” or “good-bye.” Each handshake always involves exactly two
people. By the end of the evening, some people have shaken hands an
even number of times and some have shaken hands an odd number
of times. Is it possible that an odd number of people shook hands an
odd number of times? 

D. Mixed Media The CD sculpture shown here consists of CD-ROMs
facing alternately inward and outward, tracing the edges of a
truncated icosahedron (12 pentagonal openings and 20 hexagonal
openings). Count how many CDs are required to construct it.

Chronosynclastic Infundibulum,
34-inch diameter, CD-ROMs, 
George W. Hart, 1998.

Source: Photograph courtesy of George W. Hart.

Explorations 4
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Symmetry

Students locate the symmetry elements of the Platonic solids and other
polyhedra, compare those to the symmetries of Zome models, and discover
that different solids can have the same symmetries.

Goals
To understand rotational and mirror symmetry elements

To learn to identify and locate the symmetry elements of a polyhedron

Prerequisites
Units 1–4

Notes
If you don’t have green struts, use paper models of the tetrahedron and
octahedron. Or ask students to look at the symmetry of only the other 
three Platonic solids.Activities 5.2 and 5.3 require green struts.

For the purposes of this unit, it is sufficient that students develop a visual
sense of rotational symmetry and reflection symmetry.

Review with your students the ideas of centers of rotational symmetry and
lines of reflection symmetry in the case of plane figures.Then lead a short
discussion of the symmetry of a regular polygon, when thought of as part of
three-dimensional space. Students should see that a polygon has an axis of
rotational symmetry passing through its center of rotational symmetry
perpendicular to the plane of the polygon and that it has planes of reflection
symmetry passing through the lines of reflection symmetry perpendicular to
the plane of the polygon. In each case, going to three dimensions has added a
dimension to the symmetry elements.
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Challenge
Along how many planes can you cut an icosahedron in half and place it
against a mirror to see it reconstructed? How many mirror planes do the
other regular polyhedra have?

1. Hold an icosahedron lightly by two opposite balls so that you can
spin it around, or stick a red strut on the outside of each of those 
two opposite balls to make an axis for spinning it.

This is a five-fold axis, meaning that if you spin it one fifth of a
revolution, the icosahedron looks like it did in the original position.
(It also looks unchanged if you spin it two fifths, or three fifths, or 
four fifths, or all the way around.) 

An n-fold symmetry axis is an imaginary line with the property that
rotating an object 360/n degrees about the line leaves it appearing
unchanged.

2. In Exercise 1, you found that the line connecting a pair of opposite
vertices of an icosahedron is a five-fold symmetry axis.There is a
five-fold symmetry axis for each pair of opposite vertices.Two other
types of symmetry axes for the icosahedron are described below.

Three-fold axes:An imaginary line that connects the center of two
opposite faces is a three-fold axis of symmetry. Spin your icosahedron
around on a three-fold axis to see how a 120-degree rotation leaves it
appearing unchanged.

Two-fold axes:An imaginary line that connects the midpoints of two
opposite edges is a two-fold axis of symmetry. Spin your icosahedron
180 degrees on a two-fold axis to see that it appears unchanged.

Notice that all the symmetry axes cross at the center.There are no other
symmetry axes in an icosahedron; for example, there are no four-fold or
seven-fold axes.

Q1 For the icosahedron, give the number of five-fold axes,
three-fold axes, and two-fold axes.

Q2 In the icosahedron, if there are k n-fold axes, how are k and n
related?

Q3 True or False: Any line through the center is a one-fold
symmetry axis.

Icosahedron and Dodecahedron Symmetries5.1
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Imagine the plane that contains two opposite edges of your icosahedron.
Each side of the plane is a reflection of the other side. If you could slice
your model along this plane (cutting four of the balls in half and four of
the struts in half ) and put half against a mirror, it would look like the
whole icosahedron.

A symmetry plane is an imaginary plane with the property that reflecting
an object across it leaves the object appearing unchanged.

Q4 How many symmetry planes are there in an icosahedron?

The symmetry of a polyhedron means all of these symmetry elements and
their arrangement relative to each other. Imagine a labeled line for each
rotational axis, for example, labeled “5” for each five-fold axis. Imagine
also a plane for each mirror plane. If you position these where they
belong for a given polyhedron, and then erase the polyhedron, what is 
left is just your model of the symmetry, which you can study as an
abstract object.

3. Spinning a dodecahedron model as necessary, find all the symmetry
elements of the dodecahedron.

Q5 Describe the arrangement of the symmetry elements, relative to
the dodecahedron’s faces, vertices, and edges. How does this
arrangement compare with that of the icosahedron?

Q6 For the dodecahedron, find the number of five-fold axes,
three-fold axes, two-fold axes, and mirror planes.

Q7 How do the numbers of axes and mirrors in the dodecahedron
compare to those in the icosahedron?

The icosahedron and dodecahedron have the same number and
arrangement of corresponding symmetry elements, or the same symmetry.
It is called icosahedral symmetry.

4. Use the Zome System to make a model of all the axes of icosahedral
symmetry.

Icosahedron and Dodecahedron Symmetries (continued)5.1
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Challenge
Take a cube and add some green struts to make an object with 
one four-fold axis and four two-fold axes, but no mirrors.

1. Build a prism on a regular 5-gon base.

Q1 A right pentagonal prism has only one five-fold axis. Find its
two-fold axes. Describe where they are. How many are there?
(Hint:The two-fold axes do not go through the midpoints of
opposite edges.) How many mirror planes are there? Describe
where they are.

2. Build a prism on a regular 6-gon base.

Q2 Describe the symmetry elements of a right prism on a regular
n-gon base. Discuss the differences between the cases where n is
even and n is odd.

3. Build an antiprism on a regular 5-gon base.

Q3 A pentagonal antiprism, like a pentagonal prism, has one 
five-fold axis, but in other respects its symmetry is different.
Find its two-fold axes and mirror planes. Describe where they
are. How many of each are there? 

4. Make a pentagonal pyramid and a square pyramid.

Q4 Describe the symmetry elements of each pyramid.

5. Make a Zome model of a brick using four b1s, four b2s, and four b3s.
It should have six nonsquare rectangular faces.

Q5 What are its symmetry elements? 

6. Take a pentagonal prism. Using five blue struts, extend each of 
the edges of one 5-gon base, all clockwise. One end of these struts
hangs unconnected, making a kind of “saw blade.” Extend the 
edges of the other pentagon to make a saw blade in the opposite
(counter-clockwise) direction.

Q6 What symmetry elements does this object have, and how does it
compare to the original prism?

Simple Polyhedra Symmetries5.2
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Given any polyhedron that has axes and mirrors of symmetry, it is possible
to make another object with the same axes of symmetry but no mirrors.
One method is to attach some sort of n-fold spiral at each end of each 
n-fold axis.The object in Exercise 6 is one example, using prism symmetry.

7. Build, or find around you, the mirror image of the object in 
Exercise 6. (One approach is that you can simply look at it in a
mirror.) In the mirror image, the clockwise and counterclockwise saw
blades have switched positions.

An object that is different from its mirror image is called chiral, which
means it comes in left-hand and right-hand forms.The two mirrored
forms of a chiral object are called enantiomorphs of each other.

Simple Polyhedra Symmetries (continued)5.2
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Challenge
The icosahedron and the dodecahedron have exactly the same symmetry.
What other pair of regular polyhedra have a common symmetry? Explain.

Q1 Describe the symmetry axes and mirror planes of a cube.There
will be two-fold, three-fold, and four-fold axes. How many of
each are there, and where are they? (Note: If you use a Zome
cube as a model, ignore the fact that in each square two blue struts
are “up” and two are “flat.” Pretend the blue struts are round.)

Q2 Describe the symmetry axes and mirror planes of a regular
octahedron. How many of each are there, and where are they?

Q3 How do the cube and octahedron symmetries compare?

Q4 Describe the symmetry axes and mirror planes of a regular
tetrahedron. How many of each are there, and where are they?

1. Using green struts, make a regular tetrahedron inscribed in a blue cube.

Q5 Describe how the axes of the tetrahedron and the axes of the cube
are related. Describe how the mirror planes of the tetrahedron and
the mirror planes of the cube are related.

2. Construct a 2b1 cube.Add a 2b1 edge to divide one face into two 
1-by-2 rectangles. Divide the opposite square with a parallel edge.
Divide the other four squares into two rectangles also, but choose the
direction of the cuts so that the long side of each rectangle contacts the
short sides of two other rectangles.

Q6 You have constructed what is often called a pyritohedron, because it
has the same symmetry as crystals of the mineral iron pyrite.
Describe the symmetry elements of the pyritohedron and how
they differ from those of the cube.

Q7 If you ignore mirrors and look only at rotational symmetry, the
pyrite symmetry is the same as what other symmetry?

Q8 Examine a Zome cube.What symmetry does it actually have if a
blue strut lying flat is considered to be different from a blue strut
resting on edge? In other words, consider the squares as having
only two-fold symmetry, not four-fold symmetry, because a Zome
square looks different after it is rotated 90 degrees.

Cube and Related Symmetries5.3
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A. No Mirrors How can you modify a dodecahedron into an object
with all of its rotational axes, but no mirror planes? Be careful,
because extending each side of each pentagon with a saw blade
exactly as in Question 6 of Activity 5.2 does not work.Why not?
How can you modify the idea so that it does work?

B. The Hexagon in the Dodecahedron How can you slice a regular
dodecahedron to reveal a regular planar hexagon? Build a Zome
model. How many such slices are possible? A larger model can show
them all simultaneously.

C. 16-Hedron Construct a b1 dodecahedron. Pick one vertex and
connect its three neighboring vertices to each other with b2s to make
a b2 triangle. Remove the chosen vertex and the three b1s it touches.
(As a result, you changed three pentagons into three trapezoids plus a
triangle.) Rest the resulting structure on the triangle and look at the
vertices in the top half: One vertex is at the top, three surround the
top one, and six are in the next layer below that. Of those six, start
anywhere and call the vertices 1, 2, 3, 4, 5, and 6 around in a circle.
Mark vertices 1, 3, and 5 by putting an extra strut into one of their
holes. Now treat each of the three marked vertices like the first
chosen vertex: Surround it by a b2 triangle and remove the marked
vertex and its three b1s.After all of this, you should have a 16-hedron
consisting of 4 triangles and 12 isosceles trapezoids. (An isosceles
trapezoid has its two nonparallel edges congruent.) What are its
symmetry elements? (Hint: Find two-fold and three-fold axes.) Are
there mirror planes?

D. Two Irregular Blue Icosahedra Take a b1 dodecahedron and stand it
on an edge in front of you. Six edges—the top, bottom, leftmost,
rightmost, closest, and farthest edges—lie in the six planes of a cube.
Add two diagonals to each dodecahedron face so that those six edges
are each in two b1-b2-b2 isosceles triangles.This also creates eight 
b2 equilateral triangles. Remove all b1s except the chosen six, and
eight vertices will drop out. Notice that the result is an irregular
icosahedron! Continue by removing the six remaining b1s and adding
six b3s to make a concave irregular icosahedron. (Each pair of b3s
connects a pair of just-removed b1s.) Both irregular icosahedra have
the same topology as regular icosahedra: five triangles per vertex.
Both have eight equilateral faces and twelve isosceles.What symmetry
do these two irregular icosahedra have?

Explorations 5
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E. Trapezoid-ohedron This polyhedron has 24 congruent trapezoidal
faces. Start with an r2 rhombic triacontahedron (consisting of 
30 r2 rhombi; see E or F in Explorations 2). Choose six faces in the
planes of a cube. (You can place it on a table with a face down, a face
up, a face on the left, a face on the right, a face near you, and a face 
far from you.) Over just these six faces, build a rhombic pyramid,
using two r1s and two y2s as slanting edges. Notice how coplanar
triangles and rhombi combine into trapezoids; you can remove the
dividing r2 edges and combine r1 + r2 into r3s.What symmetry does 
the result have? 

This engraving by Jost Amman shows a series of
objects with icosahedral symmetry, including one,
at top right, which is chiral.

Source: Jost Amman, engraving from Wentzel Jamnitzer’s
Perspectiva Corporum Regularium, Mark J. Millard Architectural
Collection. Copyright © 2000 Board of Trustees, National
Gallery of Art, Washington, D.C.

Explorations 5 (continued)
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Euler’s Theorem

Students consolidate all the data they have gathered on the edges, faces,
and vertices of polyhedra and discover Euler’s theorem.They learn to draw
two-dimensional representations of the topology of polyhedra and use these
drawings to solve a puzzle and to study Euler’s theorem.

Goals
To discover and apply Euler’s theorem

To apply algebraic manipulations representing polyhedral components

To introduce a method for representing polyhedra in two dimensions

Prerequisites
Units 1–4 are suggested so that students will have experience with several
examples of polyhedra.

Notes
Most of this unit does not use the Zome System directly, because the Zome
System is designed around structured symmetric forms, and here we want to
emphasize that Euler’s theorem applies to any polyhedron, even asymmetric,
unstructured ones.

6.1 Faces, Vertices, and Edges

In 1750, Leonhard Euler observed a simple fact about polyhedra that every
mathematician for thousands of years before him had failed to notice:There
is a simple formula that relates the number of faces, vertices, and edges of a
convex polyhedron. If you know any two of those three numbers, you can
use his formula to solve for the third. In this activity, students will discover
Euler’s theorem on their own. If they have trouble finding the formula,
suggest that they focus on addition and subtraction.

Students should build only as much as is necessary to work out each answer.
If they can visualize the polyhedra in their mind, or sketch them on paper,
they don’t need to build at all.
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Note that while Euler’s theorem holds for all convex polyhedra, it does not
hold for just any structure. For example, an n-gon alone has V = n, F = 1,
and E = n, which does not satisfy the theorem, but a polygon is not a
polyhedron. (See Exploration A for more on this.)

The hint for Question 2 was covered in Unit 4.We will consider the case of
some nonconvex polyhedra in Unit 10.

6.2 Topology

Questions 1–3 become increasingly difficult.The following hints may make
this easier for your students.

Start by drawing your outermost face.

If a vertex is exactly opposite that face (as in 1), draw a point for it in
the center of the diagram; if a face is exactly opposite (as in 2), draw it
(small!) in the center of the diagram, paying attention to its orientation.

Make sure that you preserve the number of edges out of each vertex.
Remember that any polyhedron must have at least three edges meeting
at every vertex.

Although at this level it is not a likely problem, it is possible to make a
Schlegel-like diagram that does not represent a polyhedron, even with three
or more edges out of each vertex. For example, draw the diagram for a cube
twice, and then, with one more edge, connect one vertex of one cube to one
vertex of the other.

Several students might collaborate to answer Question 4.
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Challenge
For any polyhedron, let F, E, and V be the number of its faces, edges, and
vertices, respectively. In 1750, the Swiss mathematician Leonhard Euler
(rhymes with boiler) (1707–1783) discovered a simple relationship between
F, E, and V that holds for all convex polyhedra.What is it?

A convex polyhedron is one with no indentations.An indentation is
concave. One way to think of convexity is that the whole of a convex
polyhedron lies on the same side of any given face plane. Euler’s theorem
holds for all convex polyhedra, but only some nonconvex polyhedra. So,
in this unit, we will assume every polyhedron is convex.

1. In a table like this, consolidate your data for all the polyhedra you
have built. For some of the rows, the entries are a function of n. Add
more rows if you have explored other polyhedra.

Faces, Vertices, and Edges6.1
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Polyhedron

tetrahedron

regular octahedron

cube

regular icosahedron

regular dodecahedron

triangular prism

pentagonal prism

n-gon prism

triangular antiprism

pentagonal antiprism

n-gon antiprism

square pyramid

pentagonal pyramid

n-gon pyramid

Faces, F Vertices, V Edges, E



Q1 Find a formula relating F,V, and E. Check that it holds in every
row of the preceding table, including when you use the
formulas involving n.

2. Invent your own new polyhedron, different from your neighbors’
(for example, attach a pyramid to an antiprism or to another
pyramid; be creative!). See if Euler’s theorem holds for your new
polyhedron. Is it convex?

Q2 How many vertices are in a polyhedron consisting of 
n triangular faces? (Hint:A polyhedron consisting of n triangles
has how many edges?) Verify your answer with some examples.

Faces, Vertices, and Edges (continued)6.1
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Challenge
You want to find a round-trip path along edges of an octahedron that
visits every vertex exactly once. (Imagine a planet with 6 cities and 
12 roads, arranged like an octahedron.You live in one city and want to
visit all the others for vacation.) Use drawings so that you can try paths
on paper. Repeat this puzzle on the edges of a dodecahedron.

Euler’s discovery was the beginning of topology, a branch of mathematics
that looks at only certain aspects of geometry.Topology is concerned with
the number and connection of edges and vertices, but not the exact
shapes, angles, or lengths. If rubber objects are bent and stretched
(without tearing), then their geometric properties change, but their
topological properties remain unchanged.

For example, the diagram shown here represents
a cube that has been laid flat by stretching one
face to be very large and adjusting angles at will.
(Think of the very large face as the region
outside the figure, an inside-out square going off
to infinity.) This type of drawing preserves the
topological properties of the original polyhedron
(such as the value of V, F, and E, the number of
edges that meet at each vertex, and so on). It is
called a Schlegel diagram (after the mathematician
Victor Schlegel, 1843–1908, who first used them in the 1880s).The 
two-dimensional format of Schlegel diagrams makes them useful for
recording polyhedra on paper for studying their topological properties.

Q1 Draw a Schlegel diagram for

a. a regular tetrahedron

b. a pentagonal pyramid

Q2 Draw a Schlegel diagram for

a. a pentagonal prism

b. a pentagonal antiprism

Q3 Draw a Schlegel diagram for

a. a regular octahedron

b. a regular dodecahedron 

c. a regular icosahedron

Topology6.2
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Q4 Find a polyhedron with 8 vertices and 12 edges, other than a
cube.You may sketch it, make a Schlegel diagram for it, or build
it with the Zome System. (Hint: Starting with a simpler
polyhedron, you can add 1 edge by adding a diagonal to any
face that has 4 or more edges.You can add 1 vertex by dividing
an edge into two shorter pieces, but that also adds an edge, and
later you must connect the new vertex to some other vertex so
that it doesn’t have only 2 edges.) 

Q5 Count the faces of the polyhedron in your sketch for 
Question 4. How does your count compare to your neighbors’
counts? Comment.

Q6 How does the Schlegel diagram change when a pyramid is
erected over an n-sided face? Sketch the change for a given n,
and describe the change to the number of faces, edges,
and vertices.

Q7 How is equality in Euler’s formula preserved? (Why do both
sides of the equation change by the same amount, when a
pyramid is erected over an n-sided face?)

Q8 In general, how does the Schlegel diagram change when a
vertex of a polyhedron is truncated? (Suppose there were 
n faces meeting at the vertex.) Sketch the change for a 
given n, and describe the change to the number of faces,
edges, and vertices.

Q9 How is equality preserved in Euler’s formula when truncating? 

Topology (continued)6.2
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A. Plane Figures Figures in the plane can also
consist of faces, edges, and vertices. For example,
the one shown here has 7 faces, 15 edges, and 
10 vertices. It’s not a polyhedron, because some
of its vertices have only two edges.When
looking at such figures, make sure you count all
line intersections as vertices and count the entire
exterior as one face. (In this example, the exterior face is a 10-gon.)
There is a formula relating the number of faces, vertices, and edges of
figures in the plane. Find it.

B. Try Truncation Find as many convex polyhedra as you can with 
7 faces and 10 vertices. (A sketch or diagram suffices, but build them if
you have time.) For each polyhedron, check that Euler’s theorem holds.

C. Seven Faces Not every polyhedron with 7 faces has 10 vertices. Find
polyhedra with 7 faces and 6, 7, 8, or 9 vertices.

D. Seven Edges Using Euler’s theorem, you can prove that there is 
no polyhedron with 7 edges. Suppose that E = 7, and then find a
contradiction.You saw in Unit 4 that if a polyhedron consists entirely
of triangles, E = (3/2)F. Show more generally, since every face has at
least three edges, that in any polyhedron E ≥ (3/2)F. Conclude from
this, since there must be at least four faces, that if E = 7, then F = 4.
Make an analogous argument, since every vertex meets at least 3 edges,
that if E = 7, then V = 4. Now use Euler’s theorem to reach a
contradiction, proving that the assumption E = 7 is impossible.

E. Platonic Solids Starting from Euler’s theorem, we can prove
algebraically that there are exactly five Platonic solids, without
summing angles the way we did in Unit 3.The regular polyhedra {p, q}
consist of p-gons, meeting q at a vertex. By the counting methods of
Unit 4, show that qV = 2E = pF. Call this number k; for example,
k = 60 for the icosahedron and dodecahedron.

Solve these relations for V, E, and F in terms of p, q, and k, and
substitute into V – E + F = 2 to show that

V – E + F = 2 = k ��q
1

� – �2
1

� + �p
1

��

Now, from the fact that E = k/2, eliminate k and show that

E = 

(Or avoid using k. Instead, use qV = 2E = pF to solve for V and F in
terms of E, and substitute in Euler’s formula, then solve for E.) Since E
and the numerator must be positive, the denominator must be positive.

2pq
��2p – pq + 2q

Explorations 6
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Show that (p – 2)(q – 2) < 4 is equivalent to 2p – pq + 2q > 0. Since
p and q must be at least 3, (p – 2) and (q – 2) are two positive integers
whose product is less than 4.What are the possibilities for (p – 2) and
(q – 2), and what are the corresponding regular polyhedra?

F. Fancy Formulas Exploration E shows how to find the number of
edges of any platonic solid {p, q} as an algebraic formula:

E = 

Find analogous formulas, using only p and q, for the number of
vertices and faces in {p, q}.

Great mathematicians and their discoveries
have been celebrated in many ways. This
stamp from the former East Germany
commemorates Euler and his theorem.

2pq
��2p – pq + 2q

Explorations 6 (continued)
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Sum and Ratio Patterns

Students use both measurement and what they know about angle and side
relationships in geometry to find patterns that relate the lengths of the Zome
struts of the same color to each other. In the process, they will learn about
the golden ratio.

Goals
To understand the additive and multiplicative patterns embedded
in the Zome struts

To learn to recognize congruent angles by close observation of 
the zomeball

To learn about the golden ratio and its use in scaling Zome models

Prerequisites
To complete Activity 7.1, students need to understand several theorems
(listed in the Notes). For all the activities, they will need some facility in
working with ratios and must be familiar with the quadratic formula,
similarity, and scaling.

Notes
You can do either one or both of the first two activities, depending on the
level of understanding and the background of your students. Green struts are
used for the last part of Activity 7.2.

7.1 Finding the Patterns Using Geometry 

Students must understand these theorems before they begin this activity:

If both pairs of opposite angles of a quadrilateral are equal, then the
quadrilateral is a parallelogram, so both pairs of opposite sides are equal.

If the corresponding angles of two triangles are equal, then the triangles
are similar and the sides are proportional.

A line parallel to one side of a triangle divides the other two sides into
proportional segments.
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The assumptions about the Zome System stated on the activity page are
reasonable. If they weren’t, it would not be possible to build large Zome
structures. However, of the two assumptions, the one that breaks down more
frequently is the assumption that struts that appear straight are indeed
straight.As your students work, they are bound to encounter situations in
which one or more bent struts provide a fallacious solution to a problem.
However, that is not likely in this activity’s constructions.

If students have trouble with the Challenge, you should be willing to go on
with only one pattern for the struts discovered. For Questions 4 and 5,
students will find that not every isosceles triangle they can make using the
sum property will allow the extra zomeball(s) to be connected as the
problem requires. For Question 4, a triangle with a b2 base and one equal
side of b1 + b2 will work if the b1 strut is adjacent to the base. For 
Question 5, the equal side made up of y1 + y2 and the base of b1 + b2

must have the shorter part of the side next to the same vertex.

7.2 Finding the Patterns Using Measurement 

This is a heavily guided activity, where students will not be exercising their
problem-solving muscles. However, it provides younger students access to the
ideas of the previous activity, and it may be worth doing even in some of the
classes that did the first activity.Two reasons: It could give some concrete
substance to the work done there; and it would allow students to do the final
two exercises, which are a good way to assess their understanding of what’s
going on.

Accept any reasonable answers to the Challenge.This is a question that may
be taken up again later on, for example, in Unit 13.

7.3 The Golden Ratio and Scaling

This is an exact calculation of the ratio approximated in the previous
unit.The ratio appears in many contexts, both artistic and mathematical.
In the shorter run, understanding the sum and ratio patterns of the
Zome struts allows students to scale buildings in the ratio that relates
one Zome strut to the others of the same color, and therefore to build
ever-bigger constructions.This will turn out to be a critical skill in some
of the future units.

You may want to precede this activity with some work on the Fibonacci
sequence. (See Explorations D and E.) 
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Challenge
Find two ways in which the lengths of the
struts of the same color are related to each
other.“The lengths of the struts” refers to
the distance from the center of a ball on
one end to the center of a ball on the
other end.

In all geometric proofs using the Zome System, assume that if the struts
appear straight, they are straight, and that equal angles can be determined
by careful observation of the ball at the vertices.

1. Make a parallelogram, using six struts, all different, but only red and
blue. (A rectangle is acceptable.) 

Q1 Prove the figure you made is really a parallelogram.
(Hint: Use angles.) 

2. Make a parallelogram using six different yellow and blue struts.

Q2 Prove the figure you made is really a parallelogram.

3. Make a parallelogram using six different red and yellow struts.

Q3 Prove the figure you made is really a parallelogram.

Q4 Explain how your parallelograms reveal the sum pattern:
b1 + b2 = b3, r1 + r2 = r3, and y1 + y2 = y3.

You have verified the sum pattern.

4. Use four blue struts and four balls to make an isosceles triangle that is
not equilateral. Use the sum pattern when you construct the two
equal sides. Connect the ball that is not a vertex of the triangle to the
vertex it is not already connected to.

Q5 Prove that the figure you made includes two similar isosceles
triangles.

Q6 Explain how it follows from similar isosceles triangles that 
�
b
b

2

1
� = �b1+ b

b
2

2
� or �

b
b

2

1
� = �

b
b

3

2
� .

You have demonstrated the ratio pattern. This ratio is called τ (the Greek
letter tau).

Finding the Patterns Using Geometry7.1
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5. Use the sum pattern for the yellow struts to make an isosceles
triangle with b1 + b2 as the base. Connect to each other the two balls
that are not vertices.

Q7 Prove that the figure you made includes two similar isosceles
triangles.

Q8 Explain how it follows from similar isosceles triangles that 
�
y
y

2

1
� = �

b
b

2

1
� and �

y
y

3

2
� = �

b
b

3

2
� and, therefore, that �

y
y

2

1
� = �

y
y

3

2
� = τ.

6. Use the sum pattern for the red struts to make an isosceles triangle,
using b1 + b2 as the base. Connect to each other the two balls that are
not vertices.

Q9 Prove that the figure includes two similar triangles and explain
how it follows that �

r
r
2

1
� = �

b
b

2

1
� and �

r
r
3

2
� = �

b
b

3

2
� and, therefore, that 

�
r
r
2

1
� = �

r
r
3

2
� = τ.

Finding the Patterns Using Geometry (continued)7.1
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Challenge
Explain how the mathematicians who
designed the struts can determine if the
engineers made them accurately.

In this activity, you will use measurement to find patterns that relate the
lengths of the struts of the same color to each other.“The lengths of the
struts” refers to the distance from the center of a ball on one end to the
center of a ball on the other end.

Q1 Measure the length of the struts as exactly as you can, to the nearest
millimeter. Fill in this table, in millimeters:

Q2 Add the specified lengths to find a pattern.

b1 + b2 = 

y1 + y2 = 

r1 + r2 = 

If your measurements and calculations were accurate, you
should notice that the result in each case is approximately the
same as a number you have already seen. Summarize the pattern
you observe. (If you do not see a pattern in all three cases,
recheck your measurements or sum.)

Q3 Do some divisions of your lengths. Use a calculator, but record
results rounded to the hundredths place. Fill in this table:

Q4 Make a dot on the number line for each of your six division results.

0 1 2 3

Finding the Patterns Using Measurement7.2
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Strut

Length

b1 b2 r1 r2 r3y3y2y1b3

What to divide

Your result

�
b
b

2

1
� �

r
r
3

2
��

b
b

3

2
� �

y
y

2

1
� �

y
y

3

2
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r
r
2

1
�



You should find that all six dots are approximately in the same
place. If not, recheck your divisions and measurements.

Q5 Summarize your results:

The length of a strut divided by the length of the next shorter
strut of the same color is approximately .

If the Zome System were manufactured perfectly, if you could measure it
perfectly, and if you made the calculations correctly, you would have
discovered two patterns:

Sum pattern: x1 + x2 = x3 (where x is b, y, or r)

Ratio pattern: �
x
x

2

1
� = 1.62 (approximately)

�
x
x

3

2
� = 1.62 (approximately)

Q6 Imagine that x0 is a strut shorter than x1 in the same color and
that x4 is longer than x3 in the same color.Assume the ratio
pattern continues in both directions. How long would those
struts be?

b0 b4

y0 y4

r0 r4

Q7 Check whether the sum pattern would also continue.
(Does x0 + x1 = x2? Does x2 + x3 = x4?)

Green Lengths There are different families of green lengths possible. In
each family, the members scale by this same factor.You can find out
which lengths you have by reference to the blue struts. Green struts that
are the same length as blue struts are in the gb1, gb2, gb3, . . . family.They
make regular octagons with the blues of the same length. Green struts
that are the diagonals of blue squares are in the g1, g2, g3, . . . family.You
can make a b1-b1-g1 isosceles right triangle and a b2-b2-g2 one. Because
they are similar, you know g2/g1 is the same ratio τ as b2/b1. In this book,
only gb1, g1, and g2 are used.

Finding the Patterns Using Measurement (continued)7.2
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Challenge
Find the exact value of the number that you measured to be
approximately 1.62—the ratio pattern that you found in Activity 7.2.

The ratio, τ, between one strut and the next smaller one of the same
color is called the golden ratio. It is the only number that makes it possible
to have both the sum and ratio patterns. In this activity, you will prove
this algebraically and find the exact value of τ.

Say that b1 equals 1.

Q1 Use the ratio pattern to find b2 and b3 in terms of τ.

Q2 Use the sum pattern to write an equation.

If you answered these questions correctly, you should have a quadratic
equation with unknown τ.

Q3 Solve the equation. Find both an exact answer and an
approximate numerical value.

If you solved the equation correctly, you have found the golden ratio.
(The negative root is not relevant when considering strut lengths.) 

Q4 Using a calculator, find numerical values for

a. 1/τ

b. τ2

For each, use addition or subtraction to write an equation that
expresses it in terms of τ.

Consider the sequence 1, τ, τ2, τ3, . . . . Each term is obtained from the
previous term through multiplication by a certain factor.

Q5 What is the factor? 

Since there is a common factor, the sequence is geometric.

Q6 We know that 1 + τ = τ2. Prove that it is true that τ + τ2 = τ3

and, in fact, that τn + τ(n+1) = τ(n+2).

Q7 How can we make struts of length x4 and x5 using only the
available struts x1, x2, and x3?

The Golden Ratio and Scaling7.3
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The sum and ratio patterns are useful for scaling Zome constructions.

1. Make a y1-b2-r2 triangle. Now make triangles similar to this one,
but larger. (However, do not use whole-number scaling factors.)
Including the original, see if you can make at least three 
different sizes.

2. Take a polyhedron made with more than one type of strut, and create
a larger or smaller version, using a scaling factor of τ or 1/τ.

Q8 Explain why we measured struts lengths from ball center to ball
center.Why not measure the actual struts?

In 1509, the mathematician
Luca Pacioli was so
enthralled with the number τ
that he wrote a whole book,
The Divine Proportion, about
its various properties. 

Source: Portrait of Fra Luca Pacioli,
painted by Jacopo de Barbari, 1495.
Capodimonte Museum, Naples.

The Golden Ratio and Scaling (continued)7.3
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A. Golden Rectangles A b1-by-b2 rectangle is called a golden rectangle
because its sides are in the ratio τ. Build one, and then create a
larger rectangle from it by using three b2 struts to add a 
b2 square on its side.

a. What is the ratio of the
sides of the new rectangle?

b. Continue the process,
building ever-larger golden
rectangles.

c. How would you reverse
the process? That is,
starting from a golden
rectangle, how would you
find a smaller one inside it?

By inscribing quarter circles in the squares, it is possible to draw a
type of golden spiral, as shown in the figure above.

B. Five-Pointed Stars The 72-degree–72-degree–36-degree triangle
is called a golden triangle. Build a b1 regular pentagon, and add a
golden triangle on each side.Then connect the new vertices,
creating a larger regular pentagon. Repeat the process, building
ever-larger nested five-pointed stars.What is the scale factor from
one star to the next?

C. Smaller Struts Create a structure that positions two zomeballs at
b0 spacing. Repeat for r0, y0, b(–1), or b(–2). (Hint: Explorations A and B
may help you get started.)

D. Fibonacci The Fibonacci sequence is 1, 1, 2, 3, 5, 8, 13, . . . . It can
be written F1 = 1, F2 = 1, and Fi + Fi+1 = Fi+2. If we take the ratio of
successive terms, we get the sequence 1/1, 2/1, 3/2, . . . . Plot the ratio Fi +1/Fi

as i gets larger.What value does it approach? 

E. Other Starting Points A sequence can be called a 
generalized Fibonacci sequence if it is constructed with the formula 
Fi + Fi+1 = Fi+2, using any two numbers as F0 and F1. (They do 
not have to be integers.) Choose starting numbers different from
your neighbors’, and find out what happens to the ratio Fi +1/Fi as 
i gets larger.

Explorations 7
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Tessellations

Students build tessellations of one or more regular, irregular, or convex
polygons, and they look at nonperiodic tilings.After students have learned
about the angle relationships in tilings, they are asked to describe analogies
they see between tessellations and polyhedra.

Goals
To understand and create tessellations and tilings

To learn concepts and notations important for understanding and
discussing polyhedra

Prerequisites
Students should be familiar with the sums of the angles in triangles and other
polygons and the angles of regular polygons (see Unit 1).

Notes
For a fuller introduction to tessellations, see Unit 7 in Geometry Labs, by
Henri Picciotto, and the software Kaleidomania, by Kevin Lee (both available
from Key Curriculum Press).The ultimate reference work on this subject is
Tilings and Patterns, by Branko Grünbaum and G. C. Shephard.

8.1 Basic Tessellations

Students can get a substantial head start on this unit by spending some time
on the Challenge.Acknowledge any discoveries, and have students share them
with their classmates. Once no more progress is being made, hand out the
activity page and have students start on the more guided part of the activity.

A key concept here is that, in a tessellation, the angles around a vertex must
add up to 360 degrees.This helps answer most of the questions in this activity.
(See the Answers for how.) However, while this condition is necessary, it is
not sufficient. For example, the arrangement 10-5-5 works out around a
single point but cannot be extended to tile the plane.

For one of the Archimedean tessellations, a Zome model requires green struts.
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8.2 Nonperiodic Tilings

This activity is optional; it does not relate to the rest of this book in an
essential way. Nevertheless, it is an interesting example of contemporary
mathematics that the Zome System makes accessible. More information can
be found in Martin Gardner’s book Penrose Tiles to Trapdoor Ciphers.
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Challenge
Create some tessellations. Record them in your notebook. Can you find 
some with

only one type of polygon? 

more than one type of polygon? 

regular polygons? 

nonregular polygons?

nonconvex polygons?

A tessellation is a pattern of geometric figures that covers the plane and
repeats infinitely in two dimensions, with no gaps and no overlaps.

Two well-known tessellations are the square pattern of the checkerboard
and the hexagonal pattern of the honeycomb or chicken wire. Both
patterns are widely used for tiling floors.

When you are building tessellations, two or three repetitions in each
direction are enough to get the idea in each case. Do not spend too much
time trying to extend any pattern off to infinity! You can create
tessellations using the Zome System, or by using graph paper or a
template with geometric figures if you have one. Or you can fold a piece
of paper in half three times and cut out eight copies of the polygon you
want to experiment with.The advantage of using the Zome System is
that you can get equal angles and sides with great accuracy, and you can
hold up your tessellations to show your classmates.The disadvantage is
that not all angles and side lengths are available.

1. Find a scalene triangle tessellation.

Q1 Sketch your tessellation, indicating the angles around a vertex.

2. Find a tessellation using an arbitrary quadrilateral.

Q2 Sketch your tessellation, indicating the angles around a vertex.

3. Find a pentagon that will tessellate the plane.

Q3 Sketch your tessellation, indicating the angles around a vertex.

The simplest tessellations are composed of a single type of regular
polygon.These are called the regular tessellations.

4. Find all the regular tessellations.

Q4 Sketch your tessellations, indicating the angles around a vertex.

Basic Tessellations8.1
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There are eight tessellations that involve two or more types of regular
polygons, with the same arrangement at each vertex.These are called
Archimedean tessellations, by analogy with the Archimedean polyhedra,
which will be discussed in 
Unit 12.The one shown here is
(3, 6, 3, 6), which says that each
vertex is surrounded by
alternating equilateral triangles
and regular hexagons. It can be
constructed with the Zome
System, and so can (3, 3, 3, 3, 6).
If you have green struts, then 
(4, 8, 8) can also be constructed,
but to find others you will have
to use some other tool.The
zomeball does not allow them,
since squares are in different
planes than triangles and hexagons.

5. Find some examples of Archimedean tessellations.

Q5 What analogies do you see between tessellations and
polyhedra? What differences do you see?

Basic Tessellations (continued)8.1
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Challenge
Fill the plane with polygons in a way that no combination repeats.

1. Find a parallelogram (or a rhombus) that can be used all by itself in more
than one type of tessellation.

Q1 Notice that a regular hexagon can be dissected into three 
60-degree rhombi. Does this suggest any new rhombic tessellations?

Tessellations work by exact repetition. But the plane can be filled in such a
way that the pattern does not exactly repeat.This means that two different
small regions might be the same, but if large enough neighborhoods are
included around them, the large neighborhoods are always different.This is
called a nonperiodic tiling.

One way to achieve a nonperiodic tiling is to use the tessellation of a regular
hexagon as a starting point.Then you dissect a hexagon into three rhombi in
two different ways. (Turn one 60 degrees to get the other.) If you start with
the tessellation of regular hexagons and dissect them all into rhombi, each
time choosing at random one of the two choices, large regions will never be
exactly the same.There will be vertices with 3, 4, 5, and 6 edges.

In the 1960s, the British mathematician
Roger Penrose (b. 1931) discovered ways 
to cover the plane with polygons in
which the pattern is sure never to 
repeat, without needing to introduce
randomness.A nonperiodic tiling of “kites
and darts” is shown here.The Zome
System allows these patterns.

Q2 From the figure, determine the
interior angles of Penrose’s kites 
and darts.

2. Create a tessellation using Penrose’s
kites and darts.

3. Create a nonperiodic tiling using Penrose’s kites and darts.

Penrose also discovered that two rhombi, with 36- and 72-degree angles,
can be used to cover the plane in ways that do not repeat.

4. Create a tessellation using Penrose’s rhombi.

5. Create a nonperiodic tiling using Penrose’s rhombi.

Nonperiodic Tilings8.2
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A. Nonconvex Tiles Make a Zome tessellation with a nonconvex
quadrilateral.

B. Pentagon Tiles Make a Zome tessellation that uses regular
pentagons and just one other type of polygon. (The other type
need not be regular.)

C. Kepler’s Tessellations The German astronomer Johannes Kepler
(1571–1630), who discovered that planets have elliptical orbits, was
also interested in the problem of tessellations that involve pentagons.
The figures replicate some patterns he published in the early 1600s,
involving regular pentagons, regular decagons, and other polygons.
Make one of these with the Zome System.

Copies of Kepler’s tessellations

D. Pentagons and Triangles The figure below shows a pattern with
regular pentagons and isosceles triangles. Each pentagon touches six
surrounding pentagons. Make this pattern with the Zome System.

Pentagon and triangle tessellation

Explorations 8
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E. Escher M. C. Escher modified the edges of tessellations to make repeating
human and animal forms that cover the plane. Explore by making your own
Escher-like drawings, starting with any tessellation.

F. Spiral Tessellations The figures below show some interesting spiral
tessellations. In the first, there is one regular pentagon surrounded by
identical irregular equilateral hexagons. Explain how to extend it to infinity.
The second is a double spiral composed of isosceles triangles. If you slide
the bottom half to the left by the length of the side of the triangle, you
would have a pattern with ten-fold symmetry.The third is a one-arm spiral,
using a concave equilateral pentagon. Construct each of these with the
Zome System.

Three spiral tessellations

Explorations 8 (continued)
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Duality

Students learn to find the dual of a tessellation.The dual to a given tessellation
is another tessellation. It has a vertex in the center of each face of the given
tessellation.They extend this concept to three dimensions and find duals 
of polyhedra.

Goal
To understand the relationship between a tessellation and its dual, or
between a polyhedron and its dual

Prerequisites
Unit 8,Tessellations, is necessary, and the ability to apply the Pythagorean
theorem is needed for Question 7 of Activity 9.1 and for Activity 9.3.

Notes

9.1 Dual Tessellations

Tessellations provide an easy entry point into the concept of duality. Students
are likely to be surprised by some of the dual tessellations. If there is a lot of
interest in dual tessellations, encourage students to do Exploration A.

Question 7, calculating the needed lengths for the duals of tessellations, is not
essential, but it does provide some practice with geometric and trigonometric
ideas, and it throws light on the importance of having the right size of struts to
make various constructions.

9.2 Dual Platonic Solids

Even after finding the dual of a tessellation, finding the dual of a polyhedron is
difficult. If you give students the Challenge to find a dual polyhedron without
the activity page, give the following hint: Scaling by a factor of 2 makes edges
with a ball at the edge midpoint, where the edge of the dual polyhedron can
cross it.

The first model in this activity requires green struts.To save time, have a few
icosahedra pre-built. Or put the provided figure of the icosahedron on the
overhead, and have a whole-class discussion.
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The compound of the cube and octahedron is shown on the color insert as
part of the model called the Rhombic Dodecahedron with Diagonals.

9.3 Dual Polyhedra

Question 3 is not essential, but it is a nice relationship and, again, a good
opportunity to use geometry or trigonometry. It may be useful to review
first, outside of a three-dimensional context, the theorem: Given a circle with
center O and exterior point A, construct tangents AB and AC, and let D be
the midpoint of chord BC. Then OA/OB = OB/OD. (Proof by similar right
triangles.) As a special case, if it is a unit circle, then OB = 1 and OA and
OD are reciprocal. In the three-dimensional context of this problem, A is a
vertex of a polyhedron, D is the center of the dual’s face, and B and C are
the points where the edges of the original polyhedron and the dual are
tangent to the unit sphere.

Another way to build a model to illustrate this result is to add a 2y2 radius to
the 2b2 dodecahedron built in Activity 9.2 and hold a short red perpendicular
as the slice through the icosahedron’s face.

This book does not try to make a distinction between geometric duality and
topological duality. Most students will not ask the question, but if it comes
up, point out that given a polyhedron, only one polyhedron has the proper
lengths and angles to satisfy the theorem in Question 3 and thus be a
geometric dual. But the geometric dual can be “stretched” into an infinite
number of forms that are still topologically dual to the original. For example,
the blue and yellow Zome square pyramid is topologically dual to itself, but
not geometrically self-dual.

One method to find the topological dual of a polyhedron is to build a
pyramid on each face. Connecting the added vertices and removing the
original polyhedron and the edges added when building the pyramids creates
the topological dual of the original polyhedron, with each face replaced by a
vertex and each vertex replaced by a face. In some cases, this can be done
with the Zome System.

Icosahedron
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Challenge
Arrange two tessellations so that each has a vertex in the center of every interior
of the other.

1. Make a tessellation of blue hexagons (at least six hexagons) and rest it flat on
the table. For each edge of your tessellation, place a loose blue strut (the same
size) on the table under it, at right angles to the strut it is under (midpoint
under midpoint). If you lift up the original tessellation, you see a pattern of
the unconnected blue struts. Do not connect them with zomeballs.

Q1 If the struts were connected, what kind of tessellation would they form?

The second tessellation is dual to the first.This means that each of its edges crosses
an edge of the original tessellation at right angles.As you build tessellations and
their duals, notice how a tessellation has one vertex at the center of each interior
of its dual and vice versa.

2. Try the same thing as in Exercise 1, but start by constructing the tessellation
of squares. Lay a loose strut under each edge at right angles. Lift up the
tessellation, and see the pattern of the dual tessellation.Again, do not connect
the struts with zomeballs.

Q2 If the struts were connected, what kind of tessellation would they form?

Q3 The square tessellation is self-dual. What do you think this means?

Q4 What is the dual of the tessellation of equilateral triangles?

3. Create the tessellation in which equilateral triangles and regular hexagons
alternate (3, 6, 3, 6).

Q5 What is the dual of (3, 6, 3, 6)?

Q6 Make a conjecture about what happens if you start with any tessellation,
take its dual, and then take the dual of the dual.

Q7 We did not try to connect the loose struts with balls because the struts
are not exactly the right lengths (except for the case of squares).
Calculate the needed lengths in terms of the lengths of the original
struts:

a. For the hexagon tessellation

b. For the triangle tessellation

c. How are the answers to (a) and (b) related?

The most essential properties of duality are topological: Each tessellation has one
vertex inside each interior of the other, and each edge crosses one edge of the
other tessellation.An additional geometric property is that edge crossings are at
right angles.

Dual Tessellations9.1
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Challenge
Given a Platonic solid, create another one so that all its vertices are 
directly above the centers of the faces of the original polyhedron.
(Hint:Try double-scale.)

The ideas about duality for tessellations of
polygons also apply to polyhedra, except that the
patterns are bounded (wrapped around a ball)
rather than on a plane that extends infinitely.

Q1 What is the dual to the cube? Imagine
struts at right angles to each of the
cube’s edges. Instead of laying the struts
flat on the table, imagine a sphere that
touches the midpoint of every edge of
the cube. Imagine laying the loose
struts on the surface of the sphere, at
right angles to the cube’s edges, as in
the figure.

Q2 What is the dual to the octahedron? 

1. If you have green struts, make a model of the cube and octahedron together,
showing their mutual duality. (Hint: Use double-length struts for the edges
so there is a zomeball at the edge midpoint for the crossing.) This is the
compound of cube and octahedron in dual position. Look at it for a while,
focusing first on one then on the other.

Recall that the cube and the octahedron each have 12 edges. Now we see that
this is not a coincidence, but a consequence of the fact that they are dual.

Q3 What can you say about the number of faces and vertices in the cube
and the octahedron? 

2. The dodecahedron and the icosahedron each have 30 edges. See if they are
dual by trying to build a structure consisting of the two polyhedra, with
their edges intersecting at right angles.

Q4 What can you say about the number of faces and vertices in the
dodecahedron and the icosahedron?

Q5 If a polyhedron has k vertices, m faces, and n edges, what can you say
about its dual? 

Q6 If a polyhedron with V vertices, F faces, and E edges satisfies Euler’s
theorem, what can you say about its dual?

Dual Platonic Solids9.2
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Challenge
Construct a pentagonal antiprism for which the ten triangular faces are
equilateral. (This is just the middle section of an icosahedron.) Find its dual.You
can just hold struts against it at right angles (remembering the imaginary sphere
that the edges are all tangent to) or build a double-size model to make the
compound of the antiprism and its dual.

Q1 Describe the dual of a pentagonal antiprism. (It could be called a 
kite-ohedron. Why?)

1. Make a 2b2 pentagon and raise it to a pyramid by adding 2y3 struts.This
polyhedron will have the correct proportions to make a compound with
its dual. (Hint:The yellow edges are divided at a point that is not their
midpoints.)

Q2 What is the dual of a pentagonal pyramid?

2. Find a self-dual polyhedron you can build with green struts. (Hint: Recall
the stella octangula.)

Q3 There is an elegant geometric relation between the dimensions of dual
polyhedra when they are placed together with their edges tangent to a
unit sphere. Note that each vertex of a polyhedron is directly above
the center of a face of its dual.There is a simple formula relating the
distance between each of these two points and the center of the
sphere, which you can discover by analyzing a specific example.

The figure illustrates a slice through the compound of a dodecahedron
and an icosahedron.The slice goes through one vertex of the
icosahedron, one point where edges cross at right angles, and the
center of the sphere. One
face of the dodecahedron
is perpendicular to the
slice; the figure shows a
slice of that face. Let f be
the distance from the
dodecahedron’s face to
the center of the sphere
with a radius of 1, and 
let v be the distance from
the icosahedron’s vertex
to the same center. Using
similar triangles, derive a
formula relating v and f.

Dual Polyhedra9.3
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This slice can be seen in a Zome model, except that one of the lines is not
constructible. Start with the compound of the 2b1 dodecahedron with the
2b2 icosahedron. (It is not necessary to build the entire compound: One
face of each polyhedron is enough.) Add one 2r2 radius from the center to
an icosahedron vertex, and add a b3 radius from an adjacent edge midpoint.
Those two edges and the connecting icosahedron half-edge form the large
triangle in the figure.The remaining line, corresponding to the slice
through the dodecahedron’s face, can be visualized by holding a y2 with
one end near the edge midpoint and the other end perpendicular to the
red strut. (Do not connect this yellow strut, as it is not the correct length
or angle.) Or you can hold the model so that you are looking right along
the dodecahedron edge and the edge-on view of the plane of the
dodecahedron face shows the missing segment.

The preceding figure is general and could represent the corresponding
points and segments on any pair of dual polyhedra.

Q4 State the result from Question 3 in general terms, for any pair of
dual polyhedra.

Dual Polyhedra (continued)9.3
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A. Dual Tessellations Find the duals of some other tessellations from
Unit 8, for example, (3, 3, 3, 3, 6) and (4, 8, 8).

B. Rhombic Triacontahedron Dual Make the rhombic triacontahedron
(see Explorations 2), and find its dual. Make a compound with its
dual.The two polyhedra are different colors, making it easier to see
them separately.

C. Kite-ohedra Find other kite-ohedra (polyhedra made of kite-shaped
faces). One approach is to start with a skew polygon as its “equator,”
but be sure your faces are planar!

D. Prisms’ Dual What is the dual to an n-gon prism? Sketch it. Can a
prism’s dual be made with the Zome System?

E. Spherical Dice The figure in the Connection below shows a pair of
spherical dice, used like ordinary cubical dice, except that they have a
spherical exterior. Like cubical dice, these dice have six “faces”
marked with one to six dots.When you roll these dice, one of the 
six faces always lands clearly facing up, with equal probability.You 
can feel that they are hollow, with a small weight rattling loose inside.
The shape of the inside cavity was designed so that it never lands
partway between two numbers.What is the shape of the inside 
cavity that makes this work? 

Based on the principle of duality, spherical
dice that work like ordinary cube-shaped
dice are possible. See Exploration E above.

Source: Photograph courtesy of George W. Hart.

Explorations 9
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Descartes’ Theorem

Students are given the definition of angular deficit. Then they draw on their
knowledge of the angles of polyhedra and discover Descartes’ theorem.
Students are given examples of nonconvex polyhedra for which Descartes’
theorem and Euler’s theorem hold, and some for which the theorems do
not apply.

Goals
To discover Descartes’ theorem

To review Euler’s theorem

To use algebraic manipulation to represent polyhedral components

To develop an understanding that both theorems hold for all
convex polyhedra, but for only some nonconvex ones

Prerequisites
Units 1–4 are necessary, because students need to know enough examples of
polyhedra to do this unit. Some of the ideas in Unit 8 would also be helpful,
because of that unit’s emphasis on the sum of angles around a point.

Activity 10.2 on nonconvex polyhedra involves Euler’s theorem.To do it,
students need to have done Unit 6.

Notes
René Descartes was a French mathematician and philosopher.Among other
things, he is well-known for having invented the concept of coordinates
(which is why they’re called Cartesian coordinates) and for having said,“I think,
therefore I am.” In this unit, students learn about a theorem he discovered
about polyhedra.

10.1 Angular Deficit

The Challenge could be done with other colors, but we won’t know those
angles until Unit 13.

The definition of convex is repeated here in case your students did not do
Unit 6 on Euler’s theorem.
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Filling out the table is a substantial undertaking. Note that for each of the
examples in it, all vertices are identical to each other. More complicated
examples are to be found in Exercises 2 and 3. For the prisms assume
rectangular faces, and for the antiprisms assume equilateral triangles,
connecting the top and bottom n-gon. However, the result would still hold
in other cases.

The examples involving variables (n or x) involve a bit of algebraic
manipulation and may end up taking a long time for some students, but they
are definitely worth doing. Students should find the final outcome of each
calculation quite satisfying.

The frequency 2 icosahedral dome with triangles divided into four parts is
not strictly convex, because along some edges two faces meet in the same
plane. It is not concave either. Usually, it is assumed that no two faces of a
polyhedron are in the same plane.Technically, convexity doesn’t guarantee this,
so strict convexity is assumed.

We will see in Unit 24 that a proof of Descartes’ theorem follows directly
from a proof of Euler’s theorem.

10.2 Nonconvex Polyhedra

The notion of “simply connected polyhedra” is not simple. For an excellent
discussion, see Proofs and Refutations, by Imre Lakatos.The examples presented
here should provide enough of a warning to your students about the limits of
Euler’s and Descartes’ theorems.

All polyhedra in this activity are nonconvex, so that is not the essential factor
determining when the theorem applies. It is not easy to characterize the
exact set of polyhedra for which the theorem applies. Intuitively, the first is
somehow like a normal polyhedron just indented, while the other three are
fundamentally abnormal in some sense. Mathematically, one says that the
normal polyhedra, whether or not indented, are simply connected, while the
last three examples are not simply connected. A simply connected polyhedron is
one in which any loop of thread lying on its surface can be shrunk and slid
around to gradually shrink to any point on its surface.The donut is not
simply connected because a loop going around the hole or through the hole
cannot be shrunk to a point.The double cube and hollowed cube are not
simply connected because a loop on one part of the surface cannot be
gradually shrunk to a point on the other part.The two theorems apply to
simply connected polyhedra, which includes all convex polyhedra, but only
some indented polyhedra.

To simplify this, most texts just state the theorems “for any convex
polyhedron.”They are correct, but they leave out the many nonconvex cases
in which the theorem still holds. Euler himself, and many mathematicians
after him, did not consider cases such as these three.
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Challenge
If you place three blue struts in a zomeball, you will have created 
three angles. Do this in different ways, keeping track of the sum of 
the three angles.What is the largest sum possible? How do you get it?
What is the smallest? How many other sums can you find? 

A convex polyhedron has no indentations.An indentation is concave. One
way to think of convexity is that the whole of a convex polyhedron lies
on the same side of any given face. In this activity, you explore a theorem
discovered by the French mathematician René Descartes (pronounced
“day-CART”; 1596–1650).The theorem holds for all convex polyhedra,
but only for some nonconvex polyhedra.Assume every polyhedron in this
activity is convex.

Think about the difference between a polyhedron and a tessellation. In a
tessellation, at each vertex the angles sum to 360 degrees, because it lies in
a plane. In a convex polyhedron, at any vertex the angles sum to less than
360. Consider, for example, the cube, which has three squares meeting at
each vertex.Three 90-degree angles sum to 270 degrees, which is 
90 degrees less than 360 degrees.The 90-degree shortage is called the
angular deficit at each vertex. Descartes’ theorem is about angular deficit.

The angular deficit at a vertex of a polyhedron is 360 minus the sum of the
face (interior) angles that meet at that vertex.

Q1 What is the angular deficit at any vertex of a regular
icosahedron?

The total angular deficit of a polyhedron is the sum of the angular deficits at
each of the vertices of the polyhedron. For instance, in a cube there are 
8 identical vertices with a deficit of 90 degrees each, so the total angular
deficit of a cube is 8 times 90 equals 720 degrees.

Q2 What is the total angular deficit of a regular icosahedron?

Angular Deficit10.1
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1. Fill out a table like this. (Build only as much as is necessary to work
out each answer. If you can visualize the polyhedra in your mind, or
sketch them on paper, you don’t need to build at all. )

Q3 Make a hypothesis about the total angular deficit of any
polyhedron.

If you answered the question correctly, you have stated Descartes’
theorem. In the rest of this activity, you will verify that it applies to some
other convex polyhedra.

2. Build a 2b1 equilateral triangle, and connect the three edge midpoints
together, to make a 2b1 triangle composed of four b1 triangles.
Assemble five of these units as in a 2b1 icosahedron, and imagine
extending it to a complete icosahedral form made of 20 times 4, or
80 equilateral triangles.

Angular Deficit (continued)10.1
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vertices At each vertex Total

cube

regular icosahedron

regular octahedron

regular dodecahedron

regular tetrahedron

triangular prism

pentagonal prism

n-gon prism

pentagonal antiprism
(with equilateral sides)

n-gon antiprism

Angular deficit

Polyhedron

8 90 720



If a structure like that is used for a geodesic dome, it is called a frequency 2
icosahedral dome. The 2 means that each icosahedron edge is divided in half.

Q4 What is the total angular deficit of the icosahedral structure in
Exercise 2, if completed? Notice there are two different types of
vertices, with two different deficits.You still sum over all the vertices 
to get the total.

Q5 What happens with a frequency n icosahedral dome? 

3. Build all or part of a rhombic triacontahedron. It is composed of 
30 red rhombi.The acute angles meet in groups of five at 12 vertices,
and the obtuse angles meet in groups of three at 20 vertices.

Q6 Call the acute angle of a red rhombus x.

a. What is the obtuse angle of the red rhombus in terms of x?

b. What is the total angular deficit of the rhombic triacontahedron?
Simplify your answer.

Q7 Verify Descartes’ theorem for a pyramid on a pentagonal base with five
congruent isosceles triangles. Let each triangle have two base angles x.

a. What is the third angle of the isosceles triangles?

b. What is the total angular deficit for the pyramid?

Q8 Verify Descartes’ theorem for a pyramid on an n-gon base with 
n isosceles triangles.

Angular Deficit (continued)10.1
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Challenge
Build a polyhedron with a hole through it like a donut.

Although Descartes’ theorem focuses on angles and Euler’s theorem
ignores them, these two theorems are actually closely related. Both deal
with polyhedra as a whole, and, as you will see in this activity, they both
fail to hold in certain nonconvex cases. In working on this activity, you
might conclude that we have not been exact enough about the definition
of a polyhedron.

1. Build (part of ) a dodecahedron and erect a blue pentagonal pyramid
on the inside of each face.You will be adding a new vertex in the
middle of, and slightly inside of, each dodecahedron face.When
done, you have a new polyhedron consisting of 60 equilateral
triangles, called a nonconvex equilateral hexecontahedron.

It is just a regular dodecahedron with each pentagon replaced by a
concave dimple of five equilateral triangles.

Q1 Do Descartes’ and Euler’s theorems hold for this polyhedron?

A polyhedron with a hole through it, like a donut, is not convex.

2. Construct the polyhedron in the figure.
It has a square tube running through it,
and eight faces are trapezoids.

Q2 Does Euler’s theorem hold for this
polyhedron?

Q3 Does Descartes’ theorem hold for
this polyhedron? In the trapezoids,
there are two blue-yellow angles whose size we have not yet
determined, but they are supplementary.The algebra of
Descartes’ formula works out very neatly if you call these angles
90 – x and 90 + x.

If two cubes just touch at a vertex, is the combination one polyhedron?
Different authors choose different definitions and don’t always think
about such marginal cases, so there is no single answer. If the definition of
a polyhedron is just “a three-dimensional shape bounded by polygons,”
then it satisfies the definition.

Nonconvex Polyhedra10.2
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Q4 Consider a two-cube object formed by joining two cubes at a
common vertex. Does this object satisfy both theorems?

Q5 Consider an object formed by taking a solid cube and
hollowing out a small cube-shaped interior cavity.The result is a
region of space bounded by 12 squares. Does this object satisfy
both theorems?

Of the four examples in this activity, you should have found that both
theorems apply to one of them, but that both fail in the other three cases.

Nonconvex Polyhedra (continued)10.2
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A. Dimples and Donuts Create your own examples of a polyhedron that 
is nonconvex because it has indentations, and a donut-like polyhedron.
Verify that Euler’s and Descartes’ theorems apply in the first case but 
not the second.

B. Soccer Ball Consider the truncated icosahedron, the shape of a soccer ball.
At each vertex there is one pentagon and two hexagons. Using Descartes’
theorem, determine how many vertices it has.Then construct it or part of it
with the Zome System to verify your answer.

C. Triangle, Square, and Pentagon? Can there be a polyhedron in which an
equilateral triangle, a square, and a regular pentagon meet at each vertex?
(This problem is about all polyhedra, not just the ones that can be built with
the Zome System.)

D. Sphere-like Polyhedra Descartes’ theorem implies that sphere-like
polyhedra must have many vertices. For a polyhedron to be sphere-like, each
vertex must be almost flat so that its angular deficit is low.To have a total
deficit of 720, there must be many such vertices. Conversely, if there are
many identical vertices, each must have a low deficit so that the vertices are
almost flat.There is a Zome-constructible polyhedron that has 120 identical
vertices. Each face is a regular polygon, and at each vertex three polygons
meet.Which three regular polygons must they be? Construct the
polyhedron.

E. Pentagons and Hexagons Suppose a polyhedron consists entirely of regular
pentagons and regular hexagons. Descartes’ theorem determines the number
of pentagons. Let the number of pentagons be F5 and the number of
hexagons be F6, so F = F5 + F6.Assuming the faces are regular, how 
many edges must meet at each vertex? Find a formula for V in terms of 
F5 and F6.Another way of stating Descartes’ theorem is that if we sum all
the face angles at all the vertices, we get 360V – 720, so 

(6)(120F6) + (5)(108F5) = 360V – 720

Combine these results and determine F5.

Explorations 10
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Students explore the relationship between a cube and a dodecahedron by
identifying the five cubes that can be inscribed in a dodecahedron. Students
then create tetrahedra inside a cube and a dodecahedron.

Goals 
To learn about the relationships between the cube and the dodecahedron

To see how tetrahedra are related to the cube and the dodecahedron

Prerequisites
Units 1 and 2 are essential so that students are familiar with the Zome cube
and dodecahedron.They also need to be familiar with simple geometric proof.
The symmetry questions require Unit 5.And familiarity with Unit 7 is needed
to answer Question 5 of Activity 11.2.

Notes
Students can work together to build these aesthetically pleasing and memorable
models. Because the models are rather large, it is important to remind students
about basic Zome building principles: Push the struts all the way in; never push
simultaneously on distant parts of the model; if a ball is needed at the end of a
strut, it is best to add that ball before the strut is added to the larger figure.

11.1 One Cube

Students will be surprised to find the cube in the dodecahedron.

11.2 Five Cubes

As students build Model 3, suggest that in tight spots they leave the longer
struts for the end, since these can be flexed to be put into place.

11.3 Related Constructions

This activity requires green struts.The compound of five octahedra suggested
at the end of the activity is built in Explorations 22.

Explorations 11

Explorations B and C take a long time and a lot of pieces. (See the index of
polyhedra for strut counts.)
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Challenge
Inscribe a Zome cube inside a b1 or b2 dodecahedron so that every vertex
of the cube is a vertex of the dodecahedron.

Q1 Write down the counts of faces, edges, and vertices of the cube
and the dodecahedron. Look at the number appearing twice.
This is not a coincidence.

1. Make a b1 or b2 dodecahedron.

2. Find four of the dodecahedron’s balls that lie at the vertices of a
square. Note:The edges of the square are not there (yet), but the
dodecahedron holds the vertices in space at the correct positions 
to make a square. Feel your imaginary square by holding the
dodecahedron with a thumb or forefinger on each one of the 
four balls making up the square. If you are working with other
students, pass the dodecahedron to them so that they can find 
other squares.

3. Insert four blue struts in your model to show the square’s edges. (Use
b2s if it is a b1 dodecahedron, or use b3s if it is a b2 dodecahedron.)

Q2 Use geometry to prove your square is really a square. (How can
you tell that all four sides of your square are the same lengths
and that the angles are each 90 degrees?)

4. Continue making a cube, using the square you have already made as
one of its faces. Do not add new balls to the dodecahedron; use balls
already present in it.

The cube and the dodecahedron are concentric; that means they share the
same center.

Observe that the relationship between the number of pentagons in the
dodecahedron and the number of edges in the cube is not a coincidence.
There is a one-to-one relationship: Each cube edge is a diagonal of a
different pentagonal face.

Q3 Notice that the three-fold axes of the cube align with 
three-fold axes of the dodecahedron, but the dodecahedron 
has other three-fold axes that do not align with the cube’s
structure.What other sets of axes do align between the cube
and the dodecahedron?

One Cube11.1
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Challenge
Can you fit more than one cube into the dodecahedron? If so, how?

Q1 In making your cube, you found six squares whose vertices
were also the dodecahedron’s vertices. How many different
squares can be found this way? (Hint:The center of each square
lies directly behind what?)

1. Point out some other squares, not in your cube, using your thumbs
and forefingers.

Q2 How many different cubes can you find in the dodecahedron?

You will make a model of all the cubes in the dodecahedron intersecting
each other, but it will take some planning.

Q3 If you try to add a second cube to your dodecahedron, you 
will run into a problem.What is the problem? (If you do not
see it right away, try holding a b2 or b3 between each of the 
12 different pairs of balls that would be connected by the edges
of your second cube.)

Each cube creates one diagonal in each of the pentagons of the
dodecahedron. If all five cubes were there, then you would see all 
five diagonals for each pentagon of the dodecahedron.

Q4 Sketch on paper the shape you get by drawing all five diagonals
of a regular pentagon.

2. Make a b3 pentagon and then construct the diagonals inside the
pentagon with five b1s and with ten b2s. (Use five balls to make
connections where the diagonals cross.)

The five-pointed shape you just created is called a pentagram.

3. Construct the b3 dodecahedron with all the diagonals of all the faces.

4. Remove the b3 edges, and you have just the five intersecting cubes.

You have built the compound of five cubes.

Q5 Explain why the cubes’ edges are of length b4.

Q6 Which of the many axes of symmetry of the individual cubes
align with each other or the various axes of symmetry of the
dodecahedron?

Five Cubes11.2
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Challenge
Create a compound of five concentric regular tetrahedra.

1. Create a regular tetrahedron inside a cube. Green struts are required.

2. Create a regular tetrahedron in a regular dodecahedron. Green struts
are required.

3. Create five tetrahedra in a regular dodecahedron. (Hint: No scaling 
is necessary.) (When your model is complete, you can remove all 
the blues except one 5-gon as a base for the compound of 
five tetrahedra.)

Q1 In how many different ways can five tetrahedra be inscribed in
a dodecahedron? No two tetrahedra should share a vertex.

If you take the dual of the two parts to the cube-in-a-dodecahedron, you
get an icosahedron-in-an-octahedron.

4. Build a 2b1 icosahedron. Rest it on an edge and pick six of its edges
that are perpendicularly arranged: top, bottom, left, right, front, and
back. Mark these six edges by inserting a b1 directly outward from the
node at the edge midpoint.This creates two b1 right angles; insert
their g1 hypotenuses.Add g2s that extend these edges into a regular
octahedron. Finally, remove the six b1s that were used only for
marking and scaffolding.

In the cube-in-a-dodecahedron, the eight vertices of the cube are eight
vertices of the dodecahedron. In this dual model, eight of the faces of the
icosahedron lie in the planes of the eight faces of the octahedron.This
happens because vertices transform to faces when you take the dual.
Dualizing also turns things “inside out” in the sense that the cube on the
inside dualizes to the octahedron on the outside.

Q2 What does the tetrahedron-in-the-dodecahedron dualize to?

5. Build the dual to the tetrahedron-in-the-dodecahedron.

The dual to the five cubes is a compound of five octahedra surrounding
one icosahedron.You can extend your octahedron-around-an-icosahedron
by adding four more g1 + g2 octahedra, but the g2s need to bend a bit
around each other. It is also possible to scale up, so as to have a node at
the crossing point, but a great many pieces would be needed.

Related Constructions11.3
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A. Roof Shapes The ancient Greeks discovered the cube-in-the-
dodecahedron over 2000 years ago. In Euclid’s classic text on
geometry, The Elements, compiled around 300 B.C., he makes this
construction, but going in the opposite direction. Euclid starts with 
a cube and adds six roof shapes to form the dodecahedron.Try to
build a dodecahedron that way. (A roof shape is made of five pieces 
of the same length; when added to the side of a cube, the roof shape
contains two triangles and two isosceles trapezoids.)

B. Intersection of Five Cubes The common space inside all cubes 
in the compound of five cubes is a rhombic triacontahedron 
(a polyhedron with 30 rhombus faces, built from red struts in
Explorations 2). If your cubes are b2 + b1 + b2, their intersection is an
r2 rhombic triacontahedron floating inside. Its vertices need to be
connected to the cube’s edges using some scaffolding, such as y2s to
the cube’s vertices or r2s to the pentagram’s crossing points.Add the
common intersection to your model.

C. Faces of the Five Cubes Zome models
are vertex and edge models, which do not
show face planes.This figure shows the
faces of the five cubes and how they cut
through each other.Wherever two planes
cross is a line of intersection.Add some 
of these lines of intersection to your 
five-cube model.They are red and yellow.
You can tell visually if you have placed
them correctly because you can sight
along a square to test that a red or yellow
strut is in its plane, that is, not sticking out above or below the plane.
The line of intersection of two planes is the only line that passes this
test from both planes. Note: If your cubes have b2 + b1 + b2 edges,
some segments of these intersection lines would require r0 struts, so
scale everything up another size to b5 cubes if you want to be able to
show even the smallest segments of this model.The inner r3 rhombic
triacontahedron is then very apparent.

D. Rhombic Dodecahedron There is another kind of dodecahedron
associated with the cube.The six roofs on the cube that make the
dodecahedron can be replaced with six yellow square pyramids.
Doing so makes a yellow rhombic dodecahedron. It is a dodecahedron
because there are 12 faces, but now each face is a yellow rhombus.

Explorations 11
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The astronomer and mathematician Johannes Kepler discovered 
this shape in the 1600s.The figure shows his drawings of both
dodecahedra around a cube.

Make a rhombic dodecahedron and notice the one-to-one
relationship between the edges of the cube and the short diagonals 
of the rhombi. Remove the blue struts to have just the rhombic
dodecahedron.

If you build a rhombic dodecahedron around each of the five cubes in
the compound of five cubes, you get a compound of five rhombic
dodecahedra.This is a truly beautiful construction but needs 240 y2s to
complete it in size y4, with y2 + y1 + y2 edges. It is about a meter in
diameter in size y5.

E. Octahedron and Icosahedron Activity 11.3 showed how to construct
an icosahedron-in-an-octahedron, with every icosahedron vertex on
an octahedron edge. Can you reverse this order and use green struts to
build a regular octahedron inscribed in a regular icosahedron, with all
the octahedron’s vertices on some icosahedron edge?

F. Concave Dodecahedron There is another kind of pentagonal
dodecahedron that you can make.The
ordinary regular dodecahedron has a regular
pentagon for each face.The new
dodecahedron is called a concave dodecahedron
because it has a concave pentagon for each
face. If you take a paper pentagon and fold
it over on a diagonal, the five edges form a
concave pentagon, as in this figure.

Make a concave pentagon from five b1s. It is possible to assemble
twelve copies of this shape into a concave dodecahedron. Here is one

Explorations 11 (continued)
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method: Start with the cube in the dodecahedron and think of it as
Euclid did, as a cube with six roofs added.Then subtract the six roofs
from the cube; that is, move the six roofs to the inside of the cube’s
faces. Study the result to see that it has twelve faces, each a concave
pentagon.After you build it, look for a b0 icosahedron within it.

G. Five Tetrahedra Exterior If the compound of five tetrahedra were
made of solid interpenetrating tetrahedra, you would see only the
exterior portions of their edges.You
would also see lines where the planes
intersect.A model of this can be seen
as 60 irregular concave pentagons, as
shown in the figure. Make a concave 
5-gon in the yellow plane consisting of
b1-b1-g1-g2-g2, with a 60-degree angle
between the b1s, a 60-degree angle
between the g2s, and a concave angle of
almost 90 degrees between the b1 and
the g1. Make a model of the five
tetrahedra using this polygon, in either left-hand or right-hand form.
(Because the faces lie in the planes of an imaginary icosahedron at its
center, this is a stellation of the icosahedron. See Unit 22.)

H. Five Small Tetrahedra Make a compound of five g1 tetrahedra.
You can try to weave the g1s directly, following the pattern of the 
g2 model, or first locate the vertices of a b0 dodecahedron as
scaffolding. (This is nicely accomplished with an outward “V” of 
two y1s above every edge of the dodecahedron.) As a further
challenge, build the compound of five gb1 tetrahedra. It is just 
barely possible and holds itself together very snugly.

Explorations 11 (continued)
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Students examine one Archimedean solid, the icosidodecahedron, in detail.
Then they find and construct the others and study and compare their
symmetry.

Goals
To become familiar with the Archimedean solids

To review vertex notation and ideas about symmetry and counting

To gain more insight into the relationships between polyhedra

Prerequisites
Students should have completed Unit 5. Units 8 (Tessellations) and 10
(Descartes’Theorem) are helpful.

Notes
Another way to organize the lesson is to start with 12.2,Archimedean 
Solids and Notation; omit the Challenge, or use it as an Exploration; and 
end with 12.1,The Icosidodecahedron, and 12.3,Archimedean Solids in 
the Zome System.

12.1 The Icosidodecahedron

First, students study the icosidodecahedron.You may have a discussion of all
the ways this polyhedron is related to the dodecahedron and the icosahedron.
Students then search for and construct the Archimedean solids.These can be
divided among the class to be constructed and examined in detail by
different groups.The class can produce a chart listing the properties of each
solid (V, E, F, number of each type of face, and symmetry).

12.2 Archimedean Solids and Notation

For building in this unit, you will need to duplicate the regular polygons on
pages 89–91 on heavy paper or, better, on light cardboard. One approach is
to duplicate them on card stock. More conveniently, you can use the pre-cut
polyhedra available from Key Curriculum Press.Those have tabs, and faces
can be connected to each other with the help of rubber bands.
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Share with your students some history of these polyhedra:Archimedes was an
ancient Greek mathematician, physicist, and inventor who is known among
many other things for his work on the value of π and the volume of the
sphere.Around 250 B.C. he wrote a book that described the Archimedean
polyhedra.Archimedes’ book is lost to us.Various artists in the 1400s and
1500s discovered individual examples of these polyhedra, but not the
mathematical idea of searching for a complete set. Finally, the astronomer 
and mathematician Johannes Kepler rediscovered the idea of looking
systematically for all polyhedra with regular faces and identical vertices.
Working logically, he found the full set and published them in 1609.

If your students have trouble finding all the Archimedean solids or if you are
pressed for time, you may speed things up by handing out a copy of Kepler’s
drawings on page 92 or projecting them on the overhead.This can support
student building, or even substitute for it if you want to limit your materials
to just the Zome System.

12.3 Archimedean Solids in the Zome System

Make sure that within each class your students build as many solids as
possible.This makes for the best possible discussion of tetrahedral versus
icosahedral versus octahedral symmetry and of the relationships among
polyhedra.

Many students will find it easier in general to build the largest polygon
on the list and figure out how the other polygons join it. Other students
will use the hints, which often involve building a larger solid and
truncating it. Remind students about truncation: Chopping off a k-fold
corner of a polyhedron reveals a k-gon face.After chopping all the
corners of the polyhedron, in each plane where there was an n-gon 
face, you now find a 2n-gon face.You can usually apply truncation to a
triple-scale model of a polyhedron.Truncation to the edge midpoints is
applied to a double-scale model.

Many of these solids require green struts. Explorations E and F also require
green struts.

88 Unit 12 The Archimedean Solids Zome Geometry
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Challenge
Find and build as many Zome polyhedra as you can whose faces are
equilateral triangles and regular pentagons. Do not use any other
polygons for faces, and do not build a figure all of whose faces are the
same polygon. (Hint:There are six convex solutions. Five can be obtained
by removing struts cleverly from an icosahedron.The sixth is the
icosidodecahedron, one of the Archimedean polyhedra.)

1. The icosidodecahedron is the most regular and interesting of 
the convex polyhedra whose faces are exclusively equilateral 
triangles and regular pentagons. If you have not already made an
icosidodecahedron, make one now, using the fact that each vertex is
surrounded by a pentagon, a triangle, another pentagon, and another
triangle; or use a blue starburst (30 b2 or b3 struts in a single ball) 
as scaffolding.

Q1 Count the number of triangles and pentagons in the
icosidodecahedron.

Q2 Why do you suppose it is called an icosidodecahedron?

Q3 Count the edges. (Find several strategies, and make sure the
results agree.) 

Q4 Count the vertices. (Find several strategies, and make sure the
results agree.) 

Q5 Find all the symmetry elements for the icosidodecahedron.

Q6 How does the symmetry of the icosidodecahedron compare
with the symmetry of the icosahedron and the dodecahedron?

The Icosidodecahedron12.1
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Challenge 
What symmetric convex polyhedra are composed of more than one type
of regular polygon?

Archimedean solids are solids that are symmetric, convex, composed of
more than one type of regular polygon, and meet the condition that the
vertices are equivalent—that is, each vertex joins the same faces in the
same way.

Q1 Explain why the following polyhedra are not Archimedean
solids.

a. a pyramid with a square base and four faces that are
equilateral triangles

b. the Platonic solids

c. the zomeball (thinking of it as a polyhedron composed of
triangles, rectangles, and pentagons)

Prisms and antiprisms with regular faces also meet the conditions of
Archimedean polyhedra, but because there are infinitely many of them, it
is traditional to count them as separate groups.

It is convenient to have a notation for what meets at each vertex.The
icosidodecahedron is denoted by (3, 5, 3, 5), meaning a triangle, a
pentagon, another triangle, and another pentagon meet at each vertex.
[Since the pattern goes around the vertex in a cycle, this would be the
same as (5, 3, 5, 3); but, by convention, the smallest number is listed first.]

1. Using paper regular polygons and tape, work with your neighbors to
construct as many Archimedean solids as you can.

Even though they are not classified as Archimedean solids, regular-
polygon–based prisms and antiprisms can be written in this notation.

Q2 What is the symbol for a regular n-gon prism? 

Q3 What is the symbol for a regular n-gon antiprism?

Q4 Explain why (6, 6, 6) and (8, 8, 8) cannot denote an
Archimedean solid.

Q5 Make a list of possible Archimedean solids using the notation.
Start from polyhedra you built, but also proceed logically, using
what you know about the sum of the angles at the vertex.

2. Working with your classmates, use paper regular polygons and tape 
to build the remaining Archimedean solids.You should end up with
13 different models.

Archimedean Solids and Notation12.2
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Challenge
With your neighbors, build the first 11 models. Starting from the notation,
arrange those polygons around a vertex; then continue to make every vertex
identical. Polyhedra marked with * require green struts.

a. (3, 6, 6) *truncated tetrahedron h. (3, 4, 4, 4) *rhombicuboctahedron

b. (3, 8, 8) *truncated cube i. (3, 4, 5, 4) rhombicosidodecahedron

c. (4, 6, 6) *truncated octahedron j. (4, 6, 8) *truncated cuboctahedron

d. (5, 6, 6) truncated icosahedron k. (4, 6, 10) truncated icosidodecahedron

e. (3, 10, 10) truncated dodecahedron l. (3, 3, 3, 3, 4) snub cube

f. (3, 4, 3, 4) *cuboctahedron m. (3, 3, 3, 3, 5) snub dodecahedron

g. (3, 5, 3, 5) icosidodecahedron

If you could not determine how to arrange the necessary polygons around 
a vertex, here are recipes for the first 11:

a. (3, 6, 6) truncated tetrahedron Truncate a triple-scale regular tetrahedron.
(If you don’t have green struts, truncate the triangular pyramid with 
3b1 base and 3r1 sloping edges.)

b. (3, 8, 8) truncated cube Truncating a 3b1 cube gives irregular 8-gons,
which can be adjusted into regular 8-gons using gb1s.Alternatively, you 
can just assemble six octagons like the squares of a cube. Start with 
two perpendicular regular octagons, and join them by having them share 
a blue strut.

c. (4, 6, 6) truncated octahedron Truncate a triple-scale regular octahedron.
(If you don’t have green struts, make the triangular antiprism with 
3b1 bases and 3r1 zigzag, and truncate it.)

d. (5, 6, 6) truncated icosahedron Make a triple-scale icosahedron and truncate it.

e. (3, 10, 10) truncated dodecahedron Make a dodecahedron with 
b1 + b2 + b1 edges and truncate it, to get regular b2 10-gons.

f. (3, 4, 3, 4) cuboctahedron Make a double-scale cube or regular octahedron,
and truncate to the edge midpoints. (If you have no green struts, make this
red-blue approximation to the cuboctahedron:Wherever the cuboctahedron
has a square, the approximation will have a rectangle with two b1 edges and
two r1 edges—or scale up, using b2 and r2.To get started, remove four edges
from your approximate octahedron, leaving a nearly square pyramid. Place it
rectangle-down on the table.Then build a red and blue tetrahedron out
from each of the four triangles. Next, remove the center ball and the 

Archimedean Solids in the Zome System12.3
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Archimedean Solids in the Zome System (continued)12.3

eight struts connected to it, leaving just the base square and four 
red-and-blue right angles in vertical planes. Complete those right
angles into rectangles and add a top “square.”)

g. (3, 5, 3, 5) icosidodecahedron Truncate to the edge midpoints a 
double-scale dodecahedron or icosahedron.

h. (3, 4, 4, 4) rhombicuboctahedron Start with a regular octagonal prism
with square sides, that is, b1 + gb1 octagons as bases assembled into a
prism using b1s. Stand it vertically on a blue square face, and there
will be two vertical blue square faces halfway up. Using those blue
squares as a pair of opposite sides, make another regular 8-gon prism,
perpendicular to the first one. Finally, eight more greens complete it
as a polyhedron of squares and triangles. Notice the three mutually
perpendicular octagonal prisms.

i. (3, 4, 5, 4) rhombicosidodecahedron Make a large version of the
zomeball, but with squares instead of the rectangular holes.

j. (4, 6, 8) truncated cuboctahedron Make six regular octagons using b1s
and gb1s.With one octagon flat on the table, hold another vertically
so that they have two blue edges parallel and near each other.Turn
one octagon 90 degrees if necessary to be sure the zomeballs are
parallel. Using two gb1s, join those two blue edges into a square that
is in a plane 45 degrees from the planes of the two octagons.
Similarly, attach three more octagons to the other three blue edges of
the bottom octagon, by creating three more 45-degree squares.With
additional green struts, create more squares joining the four sides to
each other and a top octagon.

k. (4, 6, 10) truncated icosidodecahedron Start with a regular 10-gon and
build a square on the outside of every other edge. On the remaining
five edges, complete the hexagons. Make five more 10-gons, one
touching each square, and continue.

Q1 Summarize the Archimedean solids. Make a table that displays

a. the number of faces, edges, and vertices

b. its symmetry elements

c. the names of the Platonic solids with the same symmetry 
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A. Tessellations and Polyhedra Reconsider the tessellations of Unit 8.
Which are analogous to Platonic solids in having only one kind of
regular face? Consider what happens when these are truncated.The
results are analogous to certain Archimedean polyhedra. Describe this
with the {p, q} or (n, m, . . .) notation.You can build triple-scale and
double-scale tessellations to truncate.

B. Archimedean Duals Each of the Archimedean solids has more 
than one type of face but only a single kind of vertex.Therefore,
their duals have more than one type of vertex but only a single 
type of face. Starting with a double-scale icosidodecahedron or
cuboctahedron, you can construct a compound of it and its dual. For
the other Archimedean solids, the Zome System does not have the
necessary angles to make the duals, but you can sketch them.

C. In a Tetrahedron It is a curious fact that each of the Archimedean
solids can be placed in a regular tetrahedron so that four faces lie in
the planes of the tetrahedron’s faces. For each Archimedean solid, find
four faces that are in the planes of a regular tetrahedron. (For the
ones related to the cube, there are two ways to choose the four faces.
For the ones related to the icosahedron, there are five ways.)

D. Expanding Polyhedra A paper polyhedron can be expanded into a
more complex polyhedron by the following process: First, cut the
faces apart on the edges but keep them floating in space at the same
relative angles; second, slide them apart from each other and the
center slightly to open up space between the edges; third, insert a
rectangle to connect the two parts of each cut edge; and fourth, insert
an n-gon face that connects the remaining edges of the rectangles 
at each of the originally n-way vertices. Starting with a cube, you
insert 12 rectangles (one for each cube edge) and 8 triangles (one 
for each three-way vertex of the cube). By adjusting the expansion,
you make these rectangles become squares and the result is the
rhombicuboctahedron.Try this operation on each of the Platonic
solids and the icosidodecahedron.

E. Isomers Some Archimedean solids can be disassembled and
rearranged into different arrangements of the same faces. For
example, the cuboctahedron and the icosidodecahedron have regular
polygons for “equators.”When you cut on an equator, twisting the
two halves and putting them back together gives a different
arrangement of the same faces with some triangles adjacent to
triangles.When you use a Zome model, the halves will not reconnect
after the twist (since the symmetry has been destroyed), but you can



98 Unit 12 The Archimedean Solids Zome Geometry
©2001 Key Curriculum Press

hold the halves together or make a paper model to get the idea. Find
two other Archimedean solids that can be cut into two parts with a
regular polygon slice and analogously reconfigured.

F. Snubs The snub Archimedean solids cannot be constructed with 
the Zome System, but a form with the same arrangement of vertices
and edges as the snub dodecahedron can be made. Starting with a
rhombicosidodecahedron, use a green strut to add one diagonal to
each square in such a way that, when you are done, every vertex has
five edges. (For the first square, you can choose either diagonal; then,
after that, all the other choices are determined.The two choices give
the left-hand and right-hand forms.) This form is topologically
equivalent to the snub dodecahedron, but its triangles are not
equilateral.Visually, it should be clear that if the struts were stretchy,
rotating each pentagon a small amount would allow “adjusting” the
shape to make every face regular.

G. Quasi-Regular Solids Two of the Archimedean solids have 
special properties, which put them in a class of polyhedra called 
quasi-regular. In these polyhedra, every edge is equivalent, the 
dihedral angles (the three-dimensional angles between the planes 
of two faces) are equal, there are regular polygons for equators,
and the solid can be formed as the interior of a compound of a
Platonic solid and its dual.Which two are quasi-regular? Which
compounds of a Platonic solid with its dual lead to them?

H. Operations on the Platonic Solids Recall that {p, q} symbolizes the
Platonic solid composed of p-gons meeting q at each vertex.Verify
that the Archimedean solids can be derived from Platonic solids by
applying these operations:

truncation: {p, q} → (q, 2p, 2p)

truncate to midpoints: {p, q} → (p, q, p, q)

expand (see Exploration D): {p, q} → (p, 4, q, 4)

truncate to midpoints, then truncate: {p, q} → (4, 2p, 2q)

snub: {p, q} → (p, 3, q, 3, 3)

What happens when the snub operation is applied to the
tetrahedron? Also try these operations on the regular tessellations:
{4, 4}, {3, 6}, and {6, 3}.

Explorations 12 (continued)



In Unit 1 students figured out a number of zomeball angles, and in Unit 7
they calculated the relationships between Zome struts of a given color. In
this unit, they will first establish the relationship between the lengths of
different-colored struts and then find all the remaining zomeball angles.

Goals
To find the relationship between Zome lengths of different colors

To calculate the remaining zomeball angles (some green angles are
left for the Explorations)

Prerequisites
Along with the angle basics in Unit 1 and the golden ratio in Unit 7,
students need to know the Pythagorean theorem and right triangle
trigonometry.They also need to have some facility with algebraic
manipulation.

Notes

13.1 Lengths

It is easy for students to lose perspective when being led step by step through
many calculations.To keep them alert, emphasize three big ideas:

The use of the Pythagorean theorem

Simplifying expressions with the help of τ2 = 1 + τ
The existence of straightforward trigonometric relationships between
blue and red struts and between blue and yellow struts

The first two questions review what students learned in Unit 7.The final
question is a good way to verify that your students know how to use the
information they just uncovered about the relationship between the lengths.
A hint for this problem is to remember which starburst scaffolding led to a
dodecahedron in Unit 2.
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Summary table of strut lengths in terms of τ if b1 = 1:

13.2 Angles

In comparison with the previous activity, this one is quite straightforward,
especially since two of the triangles were already seen in 13.1.

It may be a good idea for students to keep sketches of the zomeball holes in
the neighborhood of the two sides of each given angle, so as to be able to
recognize these angles later.Another technique to facilitate the work on these
problems is to hold the polyhedra in such a way that the angle being
explored is in a horizontal plane.Then the polar holes in the zomeballs will
indicate which plane the angle is in.

13.3 Dihedral Angles

You may explain formally: Given planes A and B, which intersect in a line L,
construct a plane P perpendicular to L. P intersects A and B in lines a and b.
The dihedral angle between planes A and B is defined to be the angle
between lines a and b. In the context of a polyhedron, there are two
conventions for measuring dihedral angles: Some authors choose the angle
interior to the two planes, as seen at the edge, giving 60 degrees as the
dihedral angles between the square sides of the right equilateral 3-gon prism.
Others measure dihedral angles as the angles between the face normals. Rays
pointing out of the 3-gon prism’s sides are separated by 120 degrees.The two
methods yield supplementary angles, so it is easy to convert between them. In
this activity, students will use the first method, but the face normals are often
a useful intermediary.

The answers to questions in this activity are dependent on correct answers to
questions in Activities 13.1 and 13.2.
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Challenge 
Using the length of b1 as 1 unit, find r1 and y1. (Hint: Use the 
Pythagorean theorem.)

Q1 Review the basics of Zome System lengths.
If b1 = 1 unit, what is the length of 

a. b2?

b. b3?

Q2 a. τ is known as the ___________ ratio.

b. Express τ exactly with an expression involving a square
root.

c. Express τ as a decimal approximation.

Q3 What are the lengths of g1 and g2?

1. Build a b1 cube, and find a way to connect a pair of opposite vertices
with yellow struts.

Q4 Use the Pythagorean theorem in the model you just built to
find the length of the cube’s diagonal. (Hint: For a first step,
insert the diagonal of one face if you have a green strut;
otherwise, imagine it.)

Q5 Use that information to find the length of all the yellow struts.

2. Make a right triangle with legs b1 and b3 and a yellow hypotenuse.

Q6 Use the Pythagorean theorem in the triangle you made to find
the length of y2.

You probably found different expressions for y2 in Questions 5 and 6. In
order to prove that they are equivalent, you will have to manipulate
algebraic expressions containing τ.

Q7 Remember that a fundamental and very useful property of τ is
that τ2 = τ + 1.Verify this property.

This property can be used to reduce any term τn into a form that is a
linear combination of 1 and τ. In fact, in any expression involving integer
multiples of powers of τ, it is possible to have τ appearing only to the first
power, in a form x + yτ, where x and y are integers. For example:

τ3 = τ(τ2) = τ(1 + τ) = τ + τ2 = τ + (1 + τ) = 1 + 2τ

Lengths13.1
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Q8 Fill in the rest of this table. (You can verify any row with a
calculator, using 1.61803 for τ.)102

Q9 What patterns do you see in the table?

Q10 Use what you learned to show that the two expressions you
have for y2 are equivalent. (Hint: �1 + τ� simplifies nicely.)

3. Make a right triangle with legs b1 and b2.

Q11 Use the Pythagorean theorem to find the length of r1.

Like y1, you can use trigonometry to express r1 without involving τ.

4. Make a b1–b2–b2 isosceles triangle.

Q12 Sketch the triangle, labeling all sides and angles. Draw the
altitude between the equal sides, and use the figure to find the
sine of 72 degrees in terms of τ.

Q13 Use algebra to show that r1 = b1 sin 72.

Q14 Summary: Express y1 and r1 in terms of b1 and the sines of
appropriate angles.

Lengths (continued)13.1
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5. Make a b1 equilateral triangle and a b1 regular pentagon.The
necessary angles do not exist in the zomeball to actually build the
following, but you can see that 

a. the altitude of the triangle has length y1.

b. a perpendicular dropped from a vertex of the pentagon to the
extension of an adjacent side has length r1.

Q15 Check that this confirms the results you stated in Question 13.

Q16 What is the distance between opposite vertices of a regular
dodecahedron with an edge 10 meters long?

Lengths (continued)13.1
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Challenge
With or without the help of a protractor, estimate any angles between 
a pair of struts that you have not already figured out, not including
green struts.

When discussing angles, it is handy to have terminology for describing the
plane the angle is in.The three types of planes will be named by the color
of the strut that fits in the holes at the poles when the plane is the equator.
For example, with pentagonal holes as north and south poles, you can place
ten blue struts in the red plane.

Q1 Review: Check that you know how to find the angle between
any two blue struts. List the possible angles. (Reminder: First
figure out which plane the two struts are in; then see how
many struts in a flat starburst would divide that plane into 
equal angles.)

Q2 There are two Zome right angles other than the blue-blue right
angle. Describe them.

1. The blue plane contains some important angles. Place four blue,
four red, and four yellow struts into one zomeball’s blue plane.

This plane also includes the 45-degree angles between blue and green
struts, but leave the greens out for now so that the reds can fit. For the
small angle between a blue and a yellow strut, use α (Greek letter alpha).
For the small angle between a blue and a red strut, use β (Greek letter beta).

2. Construct a right triangle that contains α. Construct another right
triangle that contains β.

Q3 Use trigonometry to find a formula for these angles.Then use a
calculator to find approximate numerical values for these angles.

You can now determine any angle in the blue plane by appropriately
adding or subtracting right angles, α, and β.

Q4 What are the angles in a red rhombus?

Q5 What are the angles of a skinny yellow rhombus (that is, one 
in the blue plane)? 

Q6 What is the angle between an adjacent red and yellow strut 
(in the blue plane)?

Angles13.2
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Examine a zomeball, and you should see that you now know how to
determine the angle between almost any pair of struts. Not counting the
green struts, there are just two angles not already covered.

3. Build an isosceles triangle made of two y1s and a b1.

Use γ (Greek letter gamma) to name the blue-yellow angle in that triangle.
Note that there is no hole at the pole of the zomeballs; the polar direction
is one possible direction of the green struts, so this triangle lies in the
green plane.

Q7 Characterize γ using trigonometry and give a numerical value for it.

Q8 What is the angle between the two yellow struts in the isosceles
triangle made of two y1s and a b1? 

You now have seen every possible angle between two Zome struts (except the
greens), so you should be able to answer all the questions below. Express your
answers in terms of α, β, and γ.

Q9 What is the angle between any edge of a cube and the cube’s long
diagonal?

Q10 What is the central angle between two adjacent vertices of a
dodecahedron? (The central angle means as seen from the center of
the object.)

Q11 What is the central angle between two adjacent vertices of an
icosahedron? 

Q12 What is the central angle between two adjacent vertices of a cube? 

Q13 What is the central angle between two adjacent vertices of a regular
tetrahedron? Even if you don’t have green struts, you can make a
structure that places a ball at each vertex of a regular tetrahedron,
with all four connected to a central ball.

4. As there is no hole to use as its pole, the green plane is less apparent.To
find some of its features, do the following exercises (if you have green
struts). Make a 2y1 fat rhombus.Then, in its plane, discover how to build

a. two types of isosceles triangles 

b. a right triangle

c. a square-root-of-two rectangle

5. Still in the same plane, make a square.

6. To check that the constructions in 4 and 5 are indeed in the green plane,
verify that you can place a long green strut vertically in a zomeball of
each figure you have made.

Angles (continued)13.2
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Challenge
Adjacent faces of a cube meet at a dihedral angle of 90 degrees.
What dihedral angles occur between adjacent face planes in the 
other Platonic solids?

1. Make a blue and yellow equilateral 3-gon prism. Remove two blue
struts so that only two rectangles remain.The result is like a partly
open door, where one yellow strut is the line of the hinge.

Q1 What is the dihedral angle between the two rectangles?

Dihedral angles depend only on the planes, not the edges. Even if the
rectangles were transformed into parallelograms, as long as they stayed in
these two planes, the dihedral angle between them would be unchanged.
Or imagine a circle in the plane of each rectangle; the circles’ dihedral
angle is still defined as the angle between the planes.

2. Make a parallelogram in the plane halfway between the 
two rectangles. One edge should be the yellow strut common 
to the two rectangles. Remove one of the rectangles.

Q2 What is the dihedral angle between the parallelogram and 
the rectangle?

3. Add a second rectangle opposite the first, again sharing the yellow
strut.Add a second parallelogram opposite the first parallelogram,
again sharing the yellow strut.This model makes clearer that the
planes extend on both sides of their line of intersection.

To see the dihedral angle, sight along the yellow hinge line in this model.
Notice the three-fold and mirror symmetries of the holes in the ball. Most
of the holes lie in planes that are separated by 30 or 60 degrees.

Q3 Can you see how there are two possible values that one might
reasonably call the dihedral angle between the planes? What are
they? (Hint: Both are between 0 and 180 degrees.)

A face normal is an imaginary ray perpendicular to a face.

4. Build two blue squares. Insert a blue strut into any ball, perpendicular
to the plane of each square, representing its face normal. Hold the
blue squares vertically, next to each other, with the perpendicular
struts back-to-back facing away from each other. Holding the balls
where the face normals emerge, one in each hand, slowly turn them
so that the squares separate like the opening of a door. Keep one pair
of vertical edges—representing the hinge line—as close to each other
as the balls allow.

Dihedral Angles13.3
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Q4 As the planes separate, the normals get closer. Find and explain
the numerical relationship between the dihedral angle and the
angle between the normals.

5. This figure with face normals
shows the dihedral angles of the
regular tetrahedron. Make a b1 or
b2 cube.Add six green struts to
make a tetrahedron that uses four
of the cube’s vertices. From the
other four vertices, add yellow
struts that connect to a ball at the
center of the cube.

The yellow struts are the face normals for the tetrahedron. One yellow
normal passes through the center of each face.The angle between 
the two yellow struts was determined in Activity 13.2 to be 2γ,
approximately 109.5 degrees.

Q5 What is the dihedral angle of the tetrahedron?

6. Make (part of ) an icosahedron. Include enough of a starburst to
locate a ball at its center. Include two struts that represent the face
normals of two adjacent faces.

Q6 What is the dihedral angle of the icosahedron?

Q7 Use the same approach to find the dihedral angle of the
dodecahedron.

7. Using green struts, make a regular octahedron.Attach a regular
tetrahedron to one face. (This is like part of the stella octangula.)

Q8 What relationship do you see between the dihedral angle of the
tetrahedron and the octahedron? Using this observation, what is
the dihedral angle of the octahedron?

In the Platonic solids, all the edges are equivalent. But in most polyhedra,
there are several types of edges and several types of dihedral angles to 
be identified.

8. Make a red rhombus. Insert four yellow struts into its four vertices at
an angle that is as close as possible to perpendicular to the plane of
the rhombus. Connect the ends of the new struts with a second
rhombus.The result is a parallelepiped.

Q9 What are the four different dihedral angles of this
parallelepiped? You can see them from the symmetry of 
the ball’s holes or by constructing blue face normals.

Dihedral Angles (continued)13.3
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A. Right Triangle? Can you construct a right triangle with sides b3, 4b1,
and 5r1? Analyze it.

B. A Formula for τn Let Fn be the nth Fibonacci number, that is,
F0 = 0, F1 = 1, and Fn = Fn–1 + Fn–2. State the general formula 
for τk. Prove it by induction.

C. Angle β The angle β also can be expressed very simply as 
β = (1/2)arctan2. Show this using the trigonometric double-angle
formula

tan 2x = 

(The zomeball does not permit angles to make a right triangle with
an angle 2β.)

D. Angles Between Lines In a plane, any two lines either intersect or
are parallel. In three-space there is a third possibility. Consider a cube,
call one edge A, and find four other edges with the property that
they neither intersect nor are parallel to A. Call one edge B.
Although A and B do not meet, you can still define an angle between
them. Construct a line C parallel to B through any point of A. The
angle between A and C is taken as the angle between A and B (or,
equivalently, 180 minus that).With the Zome System, it is easy to
construct parallel lines, because every ball is always parallel to the
others. Make a list of every possible angle found between two edges
of a dodecahedron. Make a list of every possible angle found between
two edges of an icosahedron. Coincidence?

E. Some Green Angles There are a great many angles that involve
green struts. Some are easily found from isosceles triangles. Build
three isosceles triangles, each with g2s as sides, using b1, b2, and b3 as
the three bases. (For one of them, two greens will want to be in the
same hole, so be creative.) Are these triangles in any of the planes you
have seen before? You can express their apex angles as trigonometric
functions.

F. Another Green Angle One significant green-blue angle shows up in
the icosahedron-in-the-octahedron construction of Unit 11. Rebuild
that model and see two different equilateral triangles—one green and
one blue—in the yellow plane.You can measure with a protractor
that one is rotated relative to the other almost 40 degrees. How can
you find the exact angle between them? (Hint: Recall that if you
know the three sides of a triangle, you can determine its angles using
the law of cosines: C2 = A2 + B2 – 2AB cosθ.)

2tanx
�1 – tan2x
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Students start by building and analyzing the properties of polyhedra in 
which every face is a rhombus. Students then look at other zonohedra with
all-parallelogram faces and discover numerical patterns governing the number
of faces and zones they have. Finally, they learn about the star of a
zonohedron, the set of all directions of its edges, and look at zonohedra
whose faces are not limited to quadrilaterals.

Goals 
To build a range of zonohedra

To analyze zonohedra properties

Prerequisites
Students need to know the Zome basics from Units 1–5. For Activity 14.3, it
is helpful if students are familiar with Archimedean solids.

Notes

14.1 Rhombic Zonohedra

The rhombic dodecahedron was built in Explorations 11, and the rhombic
triacontahedron in Explorations 2.

The idea presented in this section can be used to create polar zonohedra
with an axis of symmetry of any order, such as seven-fold, and so on, but the
Zome System has the angles only for three-fold, four-fold, and five-fold
examples. Other models can be created in different media.The angle
between the axis and the initial set of struts can be chosen arbitrarily, and the
process used here to create zonohedra determines the rest of the polyhedron.
Exploration B suggests ways to study rhombic polyhedra further.

14.2 Zones

Zones are what make zonohedra interesting.The Zome System was named
by contracting zone-dome into one word.The architectural possibilities of
zonohedra (as implied by Questions 7–10 and Model 3) make them an
attractive alternative to geodesic domes.

14.3 Stars

Here students look at zonohedra whose faces are not all quadrilaterals.
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Challenge
Find several polyhedra in which every face is a parallelogram.

Any polyhedron composed entirely of parallelograms is one kind of
zonohedron.You will see other zonohedra, and a definition of the 
term, later.

The term rhombohedron might have been used to refer to any polyhedron
composed of rhombi, but conventionally it refers only to hexahedra
(polyhedra with six faces) in which the faces are identical rhombi.The cube
is a special case of the rhombohedron.

1. There is only one shape of red rhombus.With it, make two shapes of
rhombohedron (each with 12 red edges) and notice the difference
between them.

Each of the two models you made is a nonright prism on a rhombic base.
They are usually called an acute rhombohedron and an obtuse rhombohedron
according to which kind of angle contacts the three-fold axis.

2. Make two shapes of yellow rhombus. Use the fatter one to make two
different kinds of rhombohedron.

A rhombic hexahedron has six faces that are each rhombi, although they need
not all be congruent.The rhombohedron is the special case of rhombic
hexahedron in which all the faces are congruent.

3. In blue or yellow, construct a rhombic hexahedron that is not a
rhombohedron. Build a different one from your neighbor’s rhombic
hexahedra.

Q1 Why is it impossible to make a red rhombic hexahedron that is
not a rhombohedron?

Notice that each of the rhombohedra has a three-fold symmetry axis.
This suggests another method of constructing them, starting with the 
idea of symmetry.

4. Another way to build rhombohedra is to start with a short yellow 
strut in a zomeball.This strut serves only as a three-fold axis and is not
part of the final structure. Place three struts of any color but all the
same size into other holes of the zomeball, except in the equator
perpendicular to the axis, so that the construction is symmetric about
the three-fold axis. Each pair starts a rhombus. Finish each of the three
rhombi by adding two parallel edges.Three more edges meeting at a
vertex opposite the original vertex complete the rhombohedron.

Rhombic Zonohedra14.1
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The method generalizes to create rhombic polyhedra with arbitrary n-fold
symmetry.These are called polar zonohedra because they start with a pole and are
built up in layers toward the other pole.

5. Make a five-fold polar zonohedron using this method. Start with a red axis
of symmetry. Remember that all faces should be rhombi.There will be four
layers, with five rhombi each, before the figure closes at the opposite pole.

Q2 How many faces does your five-fold zonohedron have? How many
different-shaped faces?

There are exactly four polyhedra with more than six faces in which all the faces
are identical rhombi:

The five-fold polar zonohedron consisting of 20 red rhombi

The rhombic dodecahedron consisting of 12 yellow rhombi

The rhombic dodecahedron of the second kind consisting of 12 red rhombi

The rhombic triacontahedron consisting of 30 red rhombi

6. Build a rhombic dodecahedron by one of these two methods:

a. Place a yellow pyramid on each face of a cube, and then remove the
edges of the cube.

b. Build a yellow four-fold polar zonohedron around a blue axis.

Two acute red rhombohedra and two obtuse red
rhombohedra fit together to form a compact convex
solid called the rhombic dodecahedron of the second kind
(to distinguish it from the more symmetrical yellow
rhombic dodecahedron), as shown in the figure.

7. Construct the rhombic dodecahedron of the
second kind.

8. Build a rhombic triacontahedron, which 
has 30 red rhombus faces, by one of these 
two methods:

a. Build a b2 or b3 icosahedron and erect a shallow red triangular pyramid
on each face.Then remove the icosahedron.

b. Build a dodecahedron and erect a shallow red pentagonal pyramid on
each face.Then remove the dodecahedron.

All the polyhedra you have seen in this activity are zonohedra.A zonohedron is 
a convex polyhedron such that every face has an even number of sides and
opposite sides are parallel.

Rhombic Zonohedra (continued)14.1
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Challenge 
Choose a zonohedron you built in the previous activity, and go “around
the world” in the following way: Put your finger on an edge, and jump to
the parallel edge of the same face. Repeat, until you are back where you
started. For the zonohedron you picked, how long is the shortest trip
around the world? How long is the longest? 

1. Take either your yellow or red rhombic dodecahedron and choose
any edge. Notice that you can find a set of six edges parallel to your
chosen edge (including itself).A set of parallel edges is called a zone
of edges, and the belt of faces they join is a zone of faces.

Q1 Count the zones on your zonohedra.

The number of zones is the number of different edge directions.

2. Choose any two zones and see that they cross twice, at two opposite,
parallel faces.

In general, if there are n zones, each zone crosses the other n – 1 zones at
two places.

Q2 Explain why, on a given parallelogram face, a zone crosses only
one other zone.

Q3 In a zonohedron whose faces are all parallelograms, if there are
n zones, how many faces does each zone have? Explain.

For a zonohedron made of parallelograms, the number of zones
determines the total number of faces.

Q4 Complete this chart:

Q5 Suggest a formula that determines the number of faces given
the number of zones.

Zones14.2
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Q6 Using the observation that every pair of zones crosses twice 
(at two opposite faces), explain why your formula works.

Q7 Imagine removing a zone of six parallel edges from one of your
rhombic dodecahedra so that you have two disconnected caps, one
from each side of the zone. If you slide the two caps together (and
reduce the duplicated edges to single edges), they would join into
what kind of polyhedron?

Q8 Take the rhombic triacontahedron and choose any edge. Notice it
is part of a zone of ten edges. If you removed the zone and joined
the two caps, what would be the result?

Q9 If you removed one zone from the red five-fold polar zonohedron
and joined the two caps, what would be the result? 

Zone removal is a special, extreme case of stretching and contracting zones.

3. Take any rhombic hexahedron (for example, any rhombohedron). See
how the twelve edges come in three zones of four parallel edges each.
(The cap on each side of a zone is just one rhombus.) Replace the 
four edges of one zone with either longer or shorter struts, changing
four of the rhombi into parallelograms but keeping all the edge angles
unchanged.You can change a second set of four parallel edges to 
the third length and create a polyhedron in which all six faces are 
non-rhombic parallelograms.

A hexahedron in which all six faces are parallelograms is called a
parallelepiped. By lengthening or contracting edges, you can stretch any
parallelepiped into a rhombic hexahedron, without changing its angles.
However, with Zome lengths this may not be possible.

Any of the zones of any zonohedron can be stretched or contracted to
create a topologically equivalent zonohedron with all the same face angles
and edge directions.This process just moves the two caps closer together or
farther apart.

In Questions 7–9, you thought about removing a zone from a zonohedron
to obtain a smaller zonohedron.That can be reversed, to build up a
zonohedron, zone by zone, from smaller zonohedra.

4. Take a 6-sided zonohedron, divide it into two halves, and add three
vertices and edges to make each half three parallelograms. Keeping these
halves parallel to each other, insert a zone of six new parallel edges
connecting the halves.The result will be a 12-sided zonohedron.

Q10 What is it about zonohedra that makes them so easy to stretch and
shrink? Can you think of a practical use for this characteristic?

Zones (continued)14.2
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Challenge 
Create a zonohedron some of whose faces have more than four sides.

The process of removing zones can be reversed to create larger zonohedra
from smaller ones, adding one zone at a time.To specify the set of
directions for building a new zonohedron, use a star.

The star of a zonohedron is the set of its edge directions. Recall how every
zomeball is parallel to all the others it connects with.You can use this fact
to transfer all the directions of the edges of a zonohedron to a single ball.
For each edge direction (and edge length) of a zonohedron, place two
parallel struts in opposite holes of a parallel zomeball. For example, given
the b1 cube, its star has six b1 struts placed into perpendicularly arranged
holes. If you hold the star near each of the cube’s vertices in turn
(without rotating it), you see that the arrangement at each vertex can be
found in the star.

1. Create a star for the yellow or red rhombic dodecahedron.They have
four edge directions, so there will be eight struts in your star. Hold it
near each vertex to verify that all the edge configurations are present.

Given any star, you can create a zonohedron from it.

2. Create a random three-direction star, using blue, red, and yellow
struts. It will have six struts, in three opposing pairs. Be sure they are
not all in one plane. Opposite struts should be the same length, to
indicate the length of the edges in that direction. Now make the
parallelepiped that is the zonohedron based on that star. Copy the red
and blue struts and their included angle onto another ball. Complete
the “V” to make a red and blue parallelogram. Copy a yellow strut
and its angles to any of the four balls of the parallelogram. Complete
it into a parallelepiped by adding three parallel yellow struts and a
second red and blue parallelogram.

3. Add a strut of any color to your star for a fourth direction. Be sure
no three struts are coplanar.Also add the strut directly opposite your
new one.This makes a star with four directions. Maintaining
parallelism of the first three directions, copy the new direction to the
parallelepiped.You should be able to place seven struts altogether that
all point in this direction. Expand your parallelepiped to an irregular
rhombic dodecahedron by connecting the ends of these seven struts.
(The four internal struts dissect it into four parallelepipeds.They
show how you could have chosen the directions from the star in any
order and still ended up with the same result.)

Stars14.3
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Q1 What is the zonohedron based on the red starburst (the 
six-direction star with all twelve red struts)? 

The zonohedron based on the yellow
starburst is called the rhombic enneacontahedron.
Its faces are the two shapes of yellow
rhombus.

Q2 How many faces are in each zone
of the rhombic enneacontahedron?
How many faces does it have
altogether? How many edges? If
you have time, build part of it.

4. Construct a hexagon using two b1s,
two b2s, and two b3s, in opposite equal pairs.All of its angles should
be 120 degrees. Expand it into a right prism using a yellow strut of
any length.This is a zonohedron with four zones.The rectangles
form one zone.The other three zones each consist of two rectangles
and the two hexagons; these three zones all cross at the two hexagons.

5. Construct the star of this zonohedron and notice that all three of its
blue directions are in a single plane.

In general, zonohedra may have faces with more than four sides, such 
as hexagons. Like parallelograms, these faces have edges in opposite pairs
of equal length.The edges of these faces correspond to groups of three 
or more coplanar directions. In a face with k sides, k/2 zones cross
simultaneously. Each zone enters the k-gon face on one edge and comes
out the opposite edge.

Notice that the formulas for the numbers of faces in zonohedra with all
four-sided faces do not apply if some faces are hexagons.

Q3 Three of the Archimedean solids are zonohedra.Which ones?
(Hint: In which ones does every face have an even number 
of sides?) 

Q4 How many zones are in each of the three? 

6. Construct the star for each of the three.

Stars (continued)14.3
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A. Rhombic Diagonals The rhombic dodecahedron and the rhombic
triacontahedron have special relationships with the Platonic solids.

a. If you put the short diagonal into every face of a rhombic
dodecahedron, what do you get? What if you do the long (green)
diagonal instead? 

b. If you put the short diagonal into every face of a rhombic
triacontahedron, what do you get? What if you do the long
diagonal instead?

c. In a double-scale model of either the rhombic dodecahedron or
the rhombic triacontahedron, insert all long and short diagonals.

B. Rhombohedra Angles Explore rhombohedra by making 12 paper
copies of a given rhombus and taping them together to create the
acute and obtuse rhombohedra.You will find that if the acute angle is
too small, you can make only one of the two models.What is the
cutoff angle? Why?

C. Zome Rhombohedra How many shapes of rhombohedra can be
made with all b1 struts? You will find that certain combinations of
angles that can be made individually cannot be assembled at a single
vertex, so some polyhedra that might be made in paper cannot be
made with the Zome System, even though their individual faces are
Zome-constructible.

D. Flat Zonohedra The polar zonohedron recipe in the first activity of
this unit specifies that you cannot start with a strut in the equator.
What happens if you do?

E. Green Zonohedra Green struts can be used in any of the zonohedra
constructions as long as the edges are kept parallel. For the five-fold
polar zonohedron, there are five ways to put the first green strut into
a red hole when starting the first edges of the rhombi, but two of
these are mirror images of others, so there are only three distinct
angles. Each leads to a five-fold polar zonohedron. (There is also the
mathematical possibility of starting with five green ribs all in the 
hole of the axis.This gives a very long zonohedron, but it is not 
Zome-constructible.) How many green three-fold polar zonohedra
(rhombohedra) are there?

F. Six-Fold and Ten-Fold Zonohedra Build a six-fold almost-polar
zonohedron, starting with three red and three yellow ribs arranged
like a half-open umbrella. Generalize this to a ten-fold, almost-polar
zonohedra in blue and red or in blue and yellow.

Explorations 14
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G. Skew Polygons There is a close relationship between regular skew
polygons and polar zonohedra, which can be used for finding and
counting all the skew polygons.There is a regular skew 2n-gon
around the “equator” of any n-fold polar zonohedron when n is 
odd. Look for it on sample polar zonohedra. Conversely, every 
regular skew 2n-gon can be used as a “seed” to construct a polar
zonohedron. Build some regular skew polygons, and see if you 
can build the polar zonohedron that corresponds to each one.
How does this one-to-one matching help you find and count 
regular skew polygons?

H. Zonohedra Symmetry Describe the symmetry elements of each of
the zonohedra in this unit.

I. Negative Edges What happens if you shrink the edge length of one
or more zones to a negative length?

J. 31-Zone Zonohedron If you put struts into all 62 holes of a
zomeball, you have a 31-direction star that generates a 31-zone,
242-sided zonohedron. Ignoring green struts, it is the largest 
Zome-constructible zonohedron and the largest strictly convex
polyhedron that can be built with the Zome System using a single
strut per edge. Its largest faces have 12 sides. If you are careful, you
can build it in short struts.

This 31-zone, 242-sided zonohedron is the largest convex
polyhedron you can build with red, blue, and yellow struts.
Zonohedra are of interest architecturally because a wide
range of structures may be formed with a small inventory
of parts.

Steve Baer invented the Zome System around 1970 for
architectural applications.

Explorations 14 (continued)
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In the first activity, students calculate the surface areas of various Zome figures. In
the second, they review the idea that the ratio of the areas of similar figures is the
square of the scaling factor.

Goals
To become familiar with various techniques for determining area

To review the lengths of struts and the angles between them

Prerequisites
Units 1, 7, and 13 are crucial, as those are the ones in which strut lengths and
angles are calculated, and that is the foundation of any work on Zome area.
Students should also be good with a calculator, and they need an understanding
of right triangle trigonometry for many of the problems.

Notes

15.1 Calculating Area

This activity is a straightforward application of basic ideas about area.The
Challenge provides a chance to jump right into it and find ways to get the area of
triangles and parallelograms, which are the most likely candidates for smallest area.

If you want students to work on this activity at home, have them sketch all the
needed figures in class, including length of struts and angle measurements.

See the book Journey Through Genius:The Great Theorems of Mathematics, by
William Dunham, for a nice presentation of Heron’s proof.

15.2 Scaling Area

The Challenge is an opportunity to review the golden-ratio relationship between
struts of the same color.You can also follow it up with a calculation of the
rectangle areas in terms of b1, which would also review the length relationships
between colors.

One way to find the area of a triangle scaled with ratio of similarity k (if k is a
natural number) is to break it up into rows of triangles of the original size.The 
k rows have 1, 3, 5, . . . , 2k – 1 triangles, respectively. So the scaled area is the
original area times the sum of the first k odd numbers, which is k2.
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Challenge
Find the Zome polygon with the smallest possible area. Do not use green struts.

Calculation of area is an important practical application of geometry; surveying
land areas was one of the historical roots of geometry. In fact, the word geometry
comes from the Greek “to measure the earth.”

Our unit of area will be b1
2.All Zome areas can be expressed in the form 

c b1
2, where c is purely numeric, that is, c contains no strut lengths.Think 

of the b1
2 at the end of each area as a kind of unit, analogous to meters2.

As you know, the area of a triangle is equal to half the base times the height.

1. Make a triangle using two b1s and a b2.

Q1 What is its area?

An alternate method of finding the area of a triangle was discovered and proved
by Heron almost 2000 years ago. Heron’s formula is often useful when the three
sides, x, y, and z, are known. Define s to be the semiperimeter, equal to
(x + y + z)/2. Heron’s formula is Area = �s(s – x�)(s – y)�(s – z)�.

Q2 Verify that Heron’s formula gives the same result as in Question 1.

2. Make a triangle using two b2s and a b1.

Q3 Find its area using both methods.

Q4 What is the area of a b1 pentagon? (Hint: Divide it into triangles.)

Q5 What is the area of a b1 decagon?

Q6 What is the area of an r1 rhombus?

Q7 Find a general formula for the area of a rhombus that has diagonals 
x and y.

Q8 You can make two different y1 rhombi.What are their areas?

Calculating Area15.1
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Challenge
Make three different-shaped rectangles with the same area, each using only 
four Zome struts.

In this activity, you will investigate what happens to the area of a figure when its
dimensions are multiplied by k. To start with, consider a b2-by-y2 rectangle.

Q1 If you multiply the length by 3,

a. is the resulting figure similar to the original?

b. what happens to the area?

Q2 If you multiply the width by 3,

a. is the resulting figure similar to the original?

b. what happens to the area?

Q3 If you multiply both the length and the width by 3,

a. is the resulting figure similar to the original?

b. what happens to the area?

Q4 How is the ratio of areas related to the scaling factor?

Q5 How is the area of a b3-by-y3 rectangle related to the area of the 
b2-by-y2?

Algebraically, for a rectangle: A = lw, where l = length and w = width.After
scaling with a scaling factor k: A' = lk · wk = lwk2 = Ak2.

The same effect happens with any figure.

1. Make a triangle that is different from your neighbors’ triangles.

2. Make a triangle with triple the dimensions of the original, and dissect it into
copies of the original triangle.

Q6 How many original triangles fit into the larger one?

Q7 Make an algebraic argument like the one following Question 5, but
apply it to triangles.

In general, the ratio of area is the square of the scaling factor.

Q8 What is the area of a triangle made from two b2s and a b3?

Q9 What is the surface area of an icosahedron with edge length 3 meters?

Q10 If the distance between opposite edges of a dodecahedron is 1 inch,
what is its surface area? (You can check to see you are not way off by
comparing the answer to the area of a sphere 1 inch in diameter, if
you recall that a sphere has surface area 4πr2.)

Scaling Area15.2
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A. Regular n-gons There is a natural method of dividing a regular 
n-gon into 2n congruent right triangles that meet at its center.You
cannot make a Zome model of these triangles, because they have a
right angle and an angle of 180/n in the same plane. Give a formula
for the area of a regular n-gon with edge length e. (Draw this for
some value of n, then use trigonometry.)

B. Rhombic Dissection See how many different ways you can find to
dissect a regular Zome 10-gon into rhombi. Notice you always end
up with ten rhombi, five with a 36-degree angle and five with a 
72-degree angle! Why?

C. Midscribed Polyhedra A Platonic solid can be inscribed in a sphere,
which means its vertices lie on the sphere. It can also be circumscribed
around a sphere, which means its face centers lie on a sphere and the
faces are tangent to the sphere.A third choice is that it can be
midscribed to a sphere, which means its edge midpoints lie on the
sphere, so its edges are tangent to the sphere.The inscribed
polyhedron lies inside the sphere and has less surface area than the
sphere.The circumscribed polyhedron lies outside the sphere and has
more surface area than the sphere. But a midscribed polyhedron is
partly inside and partly outside the sphere.Which parts are inside?
Which do you think is closer to the area of a sphere: a midscribed
icosahedron or a midscribed dodecahedron?

Explorations 15
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Extending the idea of covering a plane with a tessellation of polygons,
students find polyhedra that will fill space.They look first at polyhedra 
that will fill space by translation, then they find solids that fill space with
translation and rotation. Space filling is then extended to packing spheres,
in this case zomeballs.

Goal
To build and understand structures that can fill space

Prerequisites
Unit 8 or experience with tessellations will give students background with
the two-dimensional equivalent of space filling. Students will need to be 
able to build a stella octangula (Unit 3), a truncated octahedron and the
cuboctahedron (Unit 12), and the rhombic dodecahedron (Unit 14).They
need to know that the dihedral angle of the regular octahedron is 2γ,
approximately 109.5 degrees (Unit 13).

Notes
The extensive building in Activities 16.1 and 16.3 takes time but is valuable
for developing three-dimensional visualization. Green struts are used for
some constructions, but alternate directions for a red-blue approximation are
also given.

16.1 Filling Space

As students build and visualize the five groups of polyhedra that can fill space
by translation alone, they will be determining the dihedral angles at the
edges.You might ask students to determine the dihedral angles when they
build polyhedra that fill space with translation and rotation in Model 7.

The fact that only five convex solids can pack in this way was proved a
century ago by the Russian crystallographer E. S. Federov, who discovered
zonohedra while studying the possible atomic arrangements in crystals.
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16.2 Packing Spheres 

Note that the balls and struts are not connected to each other in this activity.

16.3 The FCC Lattice

This activity requires green struts.You may choose to use red-blue
approximations for the octahedra and tetrahedra.

This activity reviews several key ideas that appear in the first two activities.
The FCC (face-centered cubic) pattern of balls and the octet truss
arrangement of edges are closely related but are not equivalent. If 
equilateral, the octet truss vertices correspond to the FCC lattice of balls.
However, the balls could be connected in other ways than the edges of the
octet truss, and the octet truss might be stretched or compressed to have
rhombi instead of squares.

124 Unit 16 Space Structures Zome Geometry
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Challenge
Construct some interesting, infinite, space-filling structures—a three-
dimensional equivalent to two-dimensional tessellations.

Space structures are structures that can be replicated to fill all space,
analogous in three dimensions to the tessellations. For example, cubes can
be stacked to fill space. So can hexagonal prisms—just think of the
hexagon tessellation, thicken it into prisms, and stack layers on top of
each other.The thickening need not be done at a 90-degree angle—the
prisms need not be right prisms.

Another space-filling structure is the triangular prism made by thickening
a tessellation of triangles. But there is a subtle difference between the
triangles and the hexagons or cubes.When you pack together triangular
prisms, some are turned 180 degrees relative to others, but when you
stack cubes or hexagonal prisms, they are always parallel to each other.
They are all translated copies of each other, without rotation.

There are only five convex shapes that can be used to fill space by
translation alone, without rotation.The cube and hexagonal prism are
two.The rhombic dodecahedron is a third.

1. Build a rhombic dodecahedron around a cube by adding a yellow
pyramid to each cube face.

2. Build a cube with yellow struts joining its vertices to its center.

Imagine space filled with cubes, and mentally color the cubes alternately
black and white, like a three-dimensional checkerboard. Every cube has
six neighbors of the opposite color. Now imagine the white ones divided
into six square pyramids, as in the model you just built. Each black cube is
empty and surrounded by six pyramids. Imagine a Zome model of this,
and remove the blue struts.This will leave a structure of rhombic
dodecahedra filling space.

3. Build a portion of this space structure. (If you use cubes as
scaffolding, remove them so that you can see the yellow space
structure you created.)

Q1 How many rhombic dodecahedra surround each edge in this
space structure? 

Q2 What size are the dihedral angles at each edge of the rhombic
dodecahedron?

Filling Space16.1
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4. To build an elongated rhombic dodecahedron, a fourth polyhedron that
will fill space by translation, take a rhombic dodecahedron and locate
a square equator that divides it in half. Carefully separate the two
halves and add four zomeballs to the bare strut ends. Now reconnect
the halves in their original orientation, but separated from each other,
by adding four blue struts.You are expanding four rhombi into four
hexagons.

Q3 Explain how the elongated rhombic dodecahedron can fill
space.What surrounds an edge? Is there only one type of edge?

Q4 What are the dihedral angles of the elongated rhombic
dodecahedron?

5. To build the fifth space-filling polyhedra, start with a green truncated
octahedron or a red-blue approximation.

6. Expand your model by connecting it face-to-congruent-face to other
truncated octahedra, continuing until you have a sense of how this
could be continued indefinitely in all directions, without leaving any
gaps between the polyhedra.

Q5 What surrounds each edge in the structure of truncated
octahedra? Is there only one type of edge?

Q6 What are the dihedral angles at each edge? (Hint:Think of the
truncation process to see that the hexagon-hexagon edge has
the same dihedral angle [2γ] as the original octahedron.Then,
knowing what fits around an edge in the space structure, you
can solve for the dihedral angle of the hexagon-square edge.)

These five solids that fill space by translation are all zonohedra.They fit
together in part because opposite faces are identical and parallel, and so
provide a match to the next unit in that direction. Stretching the zones or
changing the angles (for example, skewing a cube into a parallelepiped or
the rhombic dodecahedron into the rhombic dodecahedron of the second
kind) does not affect their ability to pack space, so each of the five solids
really represents a family of shapes with different lengths and angles.

If rotation is allowed when polyhedra fill space, there are countless
possibilities for space-filling structures.

Filling Space (continued)16.1
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7. Choose one of these space-structure possibilities and build it:

a. a square pyramid that can fill space

b. a rhombic pyramid that can fill space

c. an irregular tetrahedron that can fill space

d. an irregular octahedron of eight triangles that can fill space

e. a nonconvex polyhedron that can fill space

8. Build a space structure consisting of regular octahedra and tetrahedra
(or their red-blue approximations). Each polyhedron should be
surrounded on all sides by copies of the other.

Q7 What surrounds any interior edge of the structure?

Q8 What are the dihedral angles at each edge?

9. Build a cuboctahedron (3, 4, 3, 4) or its red-blue approximation. Expand
it into a space structure consisting of cuboctahedra and regular
octahedra. (Hint: Since the octahedra have no square faces, the
cuboctahedra must connect square-face-to-square-face.)

Filling Space (continued)16.1
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Challenge
Find some ways to pack zomeballs into a box. Can you fit more of them
into the box by stacking them directly on top of each other or by placing
balls in the next layer in between balls in the previous layer?

Pyramids of cannonballs form regular
sphere packings.You may have noticed
them with either a square base or a
triangular base. Both can be re-created
with stacks of zomeballs.To hold the
zomeballs from rolling away, create a
frame of struts like a log cabin.

1. To create a square frame, lay 
two b2 struts on a flat surface,
parallel to each other, about two inches apart. Rest two more across
those, to outline a square.Then lay two more over the first pair and
another two over the second pair. Place nine zomeballs in the frame,
as a 3-by-3 square, and tighten the frame to eliminate any free space.
Four more balls can be added for a second layer and one on top as
the third layer, to complete a square pyramid.

Q1 If this structure were expanded infinitely, how many
neighboring balls would each ball touch? 

Q2 In a horizontal slice of the structure, touching balls are arranged
in a square array.What patterns of touching balls can be found
in other plane slices? (Hint: Look at planes parallel to the
triangular faces of the pyramid you built, and look for 
vertical planes.)

2. To examine a triangular pyramid of zomeballs, use six b3s stacked like
a triangular log cabin to make a frame to hold a 4–3–2–1 triangle of
zomeballs. Place a 3–2–1 triangle above that, then a 2–1 triangle, and
finally a single ball.

Q3 If this structure were replicated infinitely, how many
neighboring balls would each ball touch? 

Q4 What patterns of touching balls can be found in different 
plane slices?

Q5 If expanded infinitely, how would these two arrangements 
of balls be related to each other?

Packing Spheres16.2
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When stacking balls by either pyramid method, it is always clear where
the next layer should be positioned, because the sides of the pyramid are
guides. However, if you first constructed two layers of infinite extent and
then went to place the third layer, there would be no edges to guide 
its placement.

Examine one layer of balls in a square arrangement and one in a
triangular arrangement. Imagine them to be of infinite extent. In the
square arrangement, the balls of the second layer can rest in the pockets of
the first layer in only one way. However, in the triangular arrangement,
when you choose a pocket for the first ball, the ball blocks the adjacent
three pockets, so only every other pocket is used. If you started in an
adjacent pocket, the first pocket would be blocked. In either case, you can
construct an infinite triangular arrangement of balls, but there are two
possible positions for it.The freedom in the triangular arrangement does
not affect the structure if there are only two layers. But when a third layer
is added, there is a choice.

3. Make a new zomeball triangle, this time five balls on a side (in a 
b3 frame).Add seven balls to the second layer—one in the center
surrounded by six in a hexagon. Find two different ways to place
three balls as the third layer.

The balls of the third layer may be directly above balls of the first layer, or
not.When laid on a triangular plane like this, when the balls are directly
above other balls three layers below, it is called face-centered cubic packing
(FCC).When balls are directly above balls two layers below, it is called
hexagonal close packing. In either packing, any ball is in contact with 
12 other balls.

Q6 In FCC packing, these 12 balls form the vertices of what kind
of polyhedron? (Hint: Look at the space structures you built in
the previous activity.) 

Q7 In the case of hexagonal close packing, describe the polyhedron
whose vertices are formed by these 12 balls.

Packing Spheres (continued)16.2
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Challenge 
Build square and triangular cannonball pyramids, but connect neighboring
balls with appropriately chosen struts.

Face-centered cubic packing can be derived from three different 
starting points.

1. Make a 2b1 square as scaffolding and the X formed by its two 
2g1 diagonals. Expand this into a cube with five more X sides—the
blue cube edges are not necessary. Finally, add twelve g1s to make the
octahedron of edges that connect the six face centers, and remove
anything blue.

You have a stella octangula. Stacking these cubes together to fill space
results in the FCC structure.

2. Visualize how four of these units around an imaginary cube’s edge
create an octahedron so that every stella octangula is surrounded by
octahedra and vice versa. Build this structure only if necessary.

Q1 How is the octahedron-tetrahedron space structure visible in the
space structure of packed stella octangulas?

3. Find three perpendicular planes with squares and four directions of
planes with triangles.

4. Now build the FCC structure again, but starting with square pyramids.
Make a 2-by-2 portion of a square tessellation. Erect a pyramid on
each square. Connect the four apexes together into a square of the dual
tessellation.Visualize how this can extend in three dimensions.

Q2 In this structure, space is divided into square pyramids and what
other polyhedron? Where does the other polyhedron come from?

Q3 Visualize multiple layers of this structure. Imagine gluing pairs of
square pyramids square-to-square to form a larger polyhedron.
What space structure results?

5. Again, find three perpendicular planes with squares or near-squares and
four directions of planes with triangles.

6. To create the same structure a third way, start with stacked
rhombohedra.Think of the tessellation of squares, slanted into 
60-degree rhombi. Build a 2-by-2 unit of green rhombi and expand it
into a 2-by-2-by-2 unit of rhombohedra. (If you do not have green
struts, the pointy red rhombohedron gives a good approximation, with
angles of 63 degrees instead of 60 degrees.)

The FCC Lattice16.3
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7. Imagine the pattern continuing off to infinity in all directions, and
turn it various ways to see nine planes of rhombic tessellations, in
three sets of three parallel planes. Notice how any of the planes could
have been chosen as the starting tessellation. In these rhombic planes,
the balls form the vertices of rhombi.

8. Find other planes in which the balls suggest a tessellation of
equilateral triangles.Add struts to connect the balls in these planes,
outlining all the equilateral triangles.

Q4 What polyhedra are outlined? 

9. Find three planes with squares (or near-squares if you are not using
green struts) and four directions of planes with triangles.

A slice or two from the structure of alternating tetrahedra and octahedra
is commonly used in architecture, usually with struts all the same length.
It makes a strong, lightweight framework, ideal for spanning large open
spaces. Because it is based on alternating octahedra and tetrahedra,
architects call it the octet truss, a name coined by Buckminster Fuller
(1895–1983), who popularized this structure for architectural applications.
Depending on which slice is used, the top and bottom surfaces might be
all triangles or all squares. Look up next time you are at the mall to see if
you can find the octet truss applied.

The FCC Lattice (continued)16.3
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A. Other Rhombohedra You can repeat the stacked rhombohedron
derivation of the lattice (Activity 16.3, Exercise 6), starting with a
different rhombohedron—blue or yellow—instead of the green or
red one you used. (Do not use b1s, and use the cube or the flat yellow
rhombohedron only if you have green struts.)

B. Tetrahedra and Octahedra When tetrahedra and octahedra alternate
over a large region of space, what is the ratio of tetrahedra to
octahedra? Count three different ways based on: first, how many faces
each has and what each face borders; second, how many edges each
has and what each edge borders; and third, how many vertices each
has and what each vertex borders.

C. A Concave Polyhedron Packing Exploration F in Unit 11
considered a concave dodecahedron, which is formed by building a
cube in a dodecahedron then subtracting from the cube the six roof
shapes.Thinking of that construction, find an interesting space
packing that involves alternating with a well-known polyhedron.

D. Bilunabirotunda A dodecahedron can be placed so that six of its
edges lie in the faces of an imaginary cube. Stacking those cubes
gives a space structure of dodecahedra joined at the edges.The
intervening spaces can be nicely filled with two other convex
polyhedra, defined by the dodecahedra vertices. One is the cube, and
the other is bounded by pentagons, squares, and triangles. Construct
the other polyhedron, which is sometimes called bilunabirotunda.

E. Archimedean Packings Here are some other combinations of
Archimedean solids that can pack together to fill space. Determine
how and make a model:

a. tetrahedra and truncated tetrahedra

b. cuboctahedra and octahedra

c. tetrahedra, cubes, and rhombicuboctahedra

d. cubes, cuboctahedra, and rhombicuboctahedra

e. octahedra and truncated cubes

f. truncated tetrahedra, truncated cubes, and truncated
cuboctahedra

g. truncated tetrahedra, truncated octahedra, and cuboctahedra

h. truncated rhombicuboctahedra and octagonal prisms

i. cubes, octagonal prisms, truncated cubes, and
rhombicuboctahedra

Explorations 16
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F. The Diamond Lattice Atoms of carbon form four bonds to other
carbon atoms. In a diamond, the arrangement is such that each
carbon atom has four neighbors at the vertices of a regular
tetrahedron surrounding it. Place four yellow struts (all the same size)
into one zomeball so that the angle between any two struts is
identical. Place a ball at the end of each strut.The balls are at the
vertices and center of a tetrahedron. Each ball represents a carbon
atom, and the struts represent its four bonds to neighboring atoms.
Because the angles are equal, no two neighbors are unnecessarily
close to each other. (The atoms repel each other, so arrangements
with very close components are not favored.) To each of the four
balls, add another three struts, to make the four struts in each ball all
at equal angles. Do this in such a way that every new strut is parallel
to one of the four original struts. (Even though a zomeball has
twenty yellow holes, only four directions are used here.) Continue
the structure until you can see repeating patterns with many skew
hexagons. How is this related to other space structures you have seen?

G. Packing Regular Dodecahedra? Might it be possible that regular
dodecahedra can be packed to fill space in some way, fitting three
around an edge? (You cannot solve this by trying to build a model of
three around an edge, because the Zome System does not even allow
you to build two face-to-face dodecahedra.)

H. Building Blocks Imagine a set of wooden blocks in the shapes of
regular tetrahedra and square pyramids. (Both block shapes use the
same size equilateral triangle.) How could you use them to build the
truncated tetrahedron, the truncated octahedron, the cuboctahedron,
a parallelepiped, a large regular tetrahedron, and a large regular
octahedron? Make a Zome model for each.

I. A Hexadecahedron Build a g1 truncated tetrahedron. On the outside
of the four triangles, build low y1 pyramids (or use g2s and y2s).This
16-sided polyhedron can fill space. How? Can this idea be applied to
make other space-filling solids? 

J. Alternating Dual Tessellations The packing of space with square
pyramids and tetrahedra was based on the square tessellation and its
dual in alternating layers. Generalize that idea to a tessellation that is
not self-dual.

Explorations 16 (continued)
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After an introduction to volume and scaling, students find the volumes of
several polyhedra.

Goals
To become familiar with techniques for calculation of volume

To get more experience with scaling

Prerequisites
Students need to know the results for area derived in Unit 15.They will 
use their experience of building the rhombohedron and the rhombic
dodecahedra (introduced in Unit 11 and Unit 14).

Notes

17.1 Prisms and Scaling

For many students, this idea about scaling volume is not easy.This activity
will work better as a review of the concept than as an introduction to it.

Questions 5 and 6 follow a pattern parallel to the algebraic argument used
when scaling area in Unit 15.

17.2 Pyramids and Beyond

Without the hint, the Challenge is extremely difficult.An additional hint is
that it can be done with the scaffolding in the plane of the pentagon; there is
no need to go into three dimensions.The solution to this problem will be
essential to answer later questions, so you should give away the answer if no
one finds it.

In the absence of green struts, you can create models with heavy paper for
Exercise 1.
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Challenge
Find a Zome prism with smallest possible volume, without using green
struts. (Hint: It will not be a right prism.)

Use the b1 cube as the unit of volume—any Zome volume can be expressed
as c b1

3.The volume of a prism is the product of its height and the base area.
If it is not a right prism, measure the height perpendicularly to the base.

1. A golden brick is a right rectangular prism that uses all three sizes of blue
strut. Make a golden brick.Then make a cube with the same volume.

2. A rhombohedron has six faces, each an identical rhombus. Make two kinds
of r1 rhombohedron (each with 12 r1 edges) and notice that each is a
nonright prism on a rhombic base.

Q1 Treating them as nonright prisms, what is the volume of each 
of the two rhombohedra with r1 edges? (Hint:To find the
perpendicular height, make double-scale models.)

Q2 What is the ratio of their volumes?

3. Join together two acute r1 rhombohedra and two obtuse 
r1 rhombohedra to form the rhombic dodecahedron of the 
second kind, whose faces are 12 identical r1 rhombi.

Q3 Find the volume of the rhombic dodecahedron of the second type.

When a solid is scaled, its surface area is multiplied by the square of the
scaling factor, and its volume is multiplied by the cube of the scaling factor.

4. To see this, make a right prism with a square or rectangular base. Build
one different from your neighbors’ right prisms.

5. Make a new right prism, with double the width, double the height, and
double the depth of your original one.

Q4 What is the ratio of the new to the old

a. surface area? b. volume?

Q5 Write an algebraic explanation of what happens when all three
dimensions of a rectangular prism are multiplied by 2

a. to the surface area. b. to the volume.

Q6 Repeat Question 5, but all three dimensions are multiplied by k.

Q7 What is the volume of the r3 rhombic dodecahedron? 

Q8 How tall a prism on a b1 square base would it take to have the
same volume as the structure in Question 7?

Prisms and Scaling17.1
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Challenge
Construct a regular pentagon (any size) and its center.That is, connect
some zomeball to the pentagon with a pattern of struts that places 
that zomeball in the exact center of your pentagon. (Hint: First try 
to make, in the same plane, a regular pentagon and a regular decagon 
that are concentric.)

1. If you have green struts, you can show one example of how the
volume of a pyramid is one third the volume of a prism of the same
base and height. Build a cube. From the same vertex, build three face
diagonals and one diagonal through the center of the cube. Study the
resulting model to see that you have created a dissection of the cube
into three congruent square-based pyramids.The volume of each
pyramid is one third of the volume of the cube and therefore one
third of base times height.This result holds for all pyramids.

2. Make a pyramid on a b1 square, with the apex above the center of 
the square.

Q1 What is its volume?

The volumes of more complex polyhedra may be determined by
dissection into simpler polyhedra such as prisms and pyramids.

Q2 The yellow rhombic dodecahedron can be built by adding
pyramids on all the faces of a cube.What is the volume of a 
y1 rhombic dodecahedron?

Q3 What is the volume of a pyramid with a b1 triangle base and r1s
as the slanting edges? (The height of the pyramid can be found
with a triple-scale model.)

Q4 What is the volume of an icosahedron with edge 1 meter?
(Hint: Dissect an icosahedron into triangular pyramids.)

Q5 Describe a strategy to find the volume of a b1 dodecahedron.

Q6 How can you find the volume of a b1 pentagonal-based
pyramid with y2 slanting edges?

Q7 What is the volume of a b1 dodecahedron?

Pyramids and Beyond17.2
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A. Algebraic Notation Simplifying expressions involving τ and �5� can
be difficult.An early 1800s geometry text gives the following method
for determining the volume of a dodecahedron from the edge length:
“To 21 times the square root of 5 add 47, and divide the sum by 40:
then the square root of the quotient being multiplied by 5 times the
cube of the linear side will give the solidity required.” It is not
obvious that this is equivalent to our answers. Express this method 
in modern notation rather than words, then verify with a calculator
that it gives the same answer as the simpler expression derived in
Activity 17.2. Can you see advantages to modern notation over this
textual presentation of the formula?

B. Antiprism Volume To calculate the volume of an antiprism, it is
handy to know the prismatoid formula.A prismatoid is a
generalization of the prism and the antiprism. It is any solid with 
two parallel polygons as bases (they need not be regular or equal)
connected with a “circumference” of triangles or quadrilaterals (not
necessarily rectangles or isosceles triangles) that touch both bases.The
volume is (1/6)(A1 + 4A2 + A3)h, where h is the height, A1 and A3
are areas of the two bases, and A2 is the area of the cross section
halfway between the planes of the bases. For example, in a pentagonal
antiprism, A1 and A3 are pentagons and A2 is a decagon. Notice that
in a prism, A1 = A2 = A3, so the formula reduces to A1h as you
expect. Explain why if A3 shrinks down to a point, the formula
reduces to the formula for the volume of a pyramid.

C. Dissecting the Rhombic Triacontahedron The rhombic
triacontahedron can be dissected into 30 pyramids, each on a
rhombic base. Summing them, find the volume of the rhombic
triacontahedron.You can also dissect a rhombic triacontahedron 
into 20 red rhombohedra, 10 acute and 10 obtuse. Make a model
showing this dissection, and verify that summing the volumes of 
the 20 rhombohedra gives the same rhombic triacontahedron 
volume you obtained by summing pyramids.



Students will construct structures big enough for one student to sit in.

Goals
To apply some of the Zome-construction ideas to problems of an
architectural nature

To construct zonish polyhedra

Prerequisites
Students should have completed Units 14 and 16.

Notes
This is a unit that may be best suited to math clubs or extra-credit projects,
rather than to actual class time.The large, complex models require a good
amount of parts, floor space, time, patience, planning, organization, and
cooperation. It is very rewarding to complete constructions on a human scale.
However, the Zome System was not designed as playground equipment.
These fragile structures are at the very limits of what the set can do.

There is no one right way to design a structure. Students will need to make
informed choices to trade off between various criteria such as size, strength,
parts needed, time needed, appearance, symmetry, weight, rigidity, and
economy in the use of Zome equipment.

Distribute the guidelines on page 141.

18.1 Zonish Big Domes

The big domes introduced in this section are like geodesic domes but are not
always as spherical. (In a geodesic dome, all the vertices lie on the surface of
an imaginary sphere and all the faces are triangular; here you will not have
those constraints.)

The activity introduces the geometry behind zonish polyhedra. Using the
Zome System, any polyhedron can be expanded to have zones in any of the
Zome directions.The zonish polyhedra have zones but are not zonohedra
unless you start with a zonohedron.These zonal expansion ideas can be
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skipped if you want to go straight to the constructions without treating the
underlying geometry.They are treated more thoroughly in the article
“Zonish Polyhedra” by George W. Hart.

18.2 Single-Layer Domes

Because these projects are so massive, distribute the polyhedra in this activity
among different groups of students.As the students work, encourage them to
look at the underlying icosahedral symmetry and other relationships with
familiar polyhedra.

18.3 Two-Layer Domes

The method used in Activities 18.1 and 18.2 is natural in architectural
applications, such as building a mall, because it uses many identical parts,
saving on cost through mass production. However, when you are working
with a fixed supply of Zome System kits, a structure using four different strut
types might be built four times as large as a structure using only one type.
The octet truss was covered in Activity 16.3.

140 Unit 18 Big Domes Zome Geometry
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For any of the big-dome structures, read through all the instructions on
the activity page to understand the entire process, make a small portion of
a small-size model, visualize the finished structure, and develop a strategy.

Part of your strategy may involve counting the total number of struts you
will need.Will you need to replace some b3s with b1-b2s? If so, where
should you place these heavier, weaker pieces?

Another aspect of the strategy is to decide whether you will build and
then connect modular components or work your way around the
structure, adding one strut at a time while being careful not to throw it
off balance.

In some cases, it is easiest to work from
the top down. Suspend the partial
structure with some string and paper clips,
as shown in the figure.

In other cases, you can build upward, but
be sure to design a base big enough to
support the weight of the full building.

If you design a single-layer dome, an
overall spherical form will make it strong
for its weight and able to support
distributed loads—forces that are spread out
across a wide area, like wind. However,
these domes have little resistance to local
loads, which can disconnect a joint,
creating a disruption that can spread to
neighboring joints and lead to a complete collapse.A two-layer big dome,
where the neighborhood of a vertex has a three-dimensional structure,
can resist local loads better.

For greater strength, you can triangulate a polygon by dissecting it into
triangles. In some cases, it is helpful to use diagonals even if they are not
part of a full triangulation. It is also possible to reinforce a structure
temporarily, as it is being built, and then carefully remove some of the
scaffolding later on, to lighten the structure or to reclaim struts.

Remember that you always must push struts tightly into the zomeballs.
Structures without tight connections fall apart easily, and small errors
accumulate to significant proportions when making these large models.

Guidelines for Building Big Domes18
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Challenge
Design and build a Zome structure based on a dodecahedron that you
can sit in.

Q1 Describe ways to strengthen a big dome by triangulating
different Zome polygons. How many diagonals does it take 
to create triangles in a rhombus? a pentagon? a hexagon? 
a decagon? an n-gon?

1. Build a regular dodecahedron and rest it on a face. Look down on 
it along the vertical five-fold axis, and see how the exterior of its
shadow is a skew 10-gon. Carefully remove the top half of the
dodecahedron (a 5-gon and 5 struts) that is above this skew 10-gon.
On each of the 10 balls that are part of this equator, place a red strut
vertically (any size, but all the same size). Place a ball on each red
strut, and connect the balls to make a second skew 10-gon, parallel to
the first. Reattach the top half of the dodecahedron to this second
skew 10-gon, to form a convex polyhedron with 12 pentagons and
10 parallelogram faces.This “zonish” polyhedron is expanded with
one zone parallel to one five-fold axis.

2. Expand the polyhedron with a second zone.Turn your model so that
it rests on another 5-gon face.The first zone of parallelograms will be
tilted. Look straight down on it and see that the exterior of its
shadow consists of two halves of a skew 10-gon, but where they meet
there are parallelograms in vertical planes. Remove and set aside the
top half, dividing it so that just the top half of each parallelogram is
taken off. In each of ten balls where part of the top half was
removed, insert vertically a red strut with a ball on the end. No 
red strut goes into the two balls that are in the middle of the
parallelograms. Connect the new balls with two half skew 10-gons.
Place the top back on, creating eight new parallelograms and two
irregular hexagons.This dodecahedron expanded with two zones has
hexagonal faces where the zones cross.

Zonish Big Domes18.1
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3. Continue this process step by step until 
all six zones are complete (one for each
five-fold axis).At each step of the way,
there are more parallelograms turning 
into hexagons and fewer edges turning 
into parallelograms. Once you understand
the structure of the polyhedron shown in
the figure, you can build it without having
to add the zones one at a time.

Q2 A dodecahedron expanded with six
zones could also have been obtained
by truncation.What is another way to describe this polyhedron?
(Hint:Although it consists entirely of pentagons and hexagons,
it does not have the correct number of hexagons to be a
truncated icosahedron.)

Zonish Big Domes (continued)18.1

Dodecahedron expanded 
with six zones
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Challenge
Expand familiar polyhedra in zonish ways to design and build a large
Zome structure.

1. The polyhedron illustrated at right
consists of 20 triangles, 12 pentagons,
30 red rhombi, and 60 almost-squares.
It was constructed using b3s and r3s,
so the almost-squares are red and blue
rectangles. It is a zonish form derived
from the icosidodecahedron by adding
six red zones. Start with the pentagons
and triangles as modules, then use 
r3s to connect them.After the
polyhedron is half built, it can be
suspended, the bottom attached, and
gently lowered over the creator. Or, if you are not trying to have
someone sit in it, you can build it working your way around with the
whole structure resting on one pentagon.

2. The polyhedron illustrated below right, consisting of 20 equilateral
triangles, 60 fat yellow rhombi, and 30 almost-regular hexagons,
has icosahedral symmetry.The rhombi are grouped into twelve sets
of five, positioned on the five-fold axes.The triangles are on the 
three-fold axes, exactly as in an icosahedron. Each hexagon has 
two-fold symmetry and sits on a 
two-fold axis.The bottom star of 
five rhombi can be omitted so 
that the whole structure rests on 
ten points—two points of each 
of five stars.

To make this structure by a modular
approach, construct eleven sets of the 
five y3 rhombi, then connect them with 
b3s that form the triangles.

This zonish polyhedron can be understood
as starting from an icosahedron that was
then expanded in the ten directions corresponding to the yellow,
three-fold axis directions.

Single-Layer Domes18.2

Icosidodecahedron expanded
with six zones

Icosahedron expanded
with ten zones 
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3. The truncated icosidodecahedron
illustrated here is the largest
Archimedean solid for a given edge
length. In b3 size, someone might fit
inside.The model can be made almost
complete, omitting one 10-gon and all
the struts it contacts.This allows it to
rest on ten balls distributed around the
base, two from each of five 10-gons,
dividing five hexagons in half, which
can be braced with diagonals.This is
the hardest of the three to build, because the decagons are so loose.
Consider using diagonals in the lower five decagons.

Single-Layer Domes (continued)18.2

Truncated icosidodecahedron 
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Challenge
Design and build a two-layer big dome.

One method for building a two-layer big dome is to take any
combination of space-filling polyhedra, fill a large region of space 
with it, and hollow out most of it.

1. Use b3s and r3s to build a structure of alternating octahedra and
tetrahedra. Imagine filling enough space to create a large truncated
octahedron with four struts per edge. Subtract from it a truncated
octahedron with three struts per edge to leave a very strong 
two-layer dome.

Another method is to take any polyhedron and use a slice of a space
structure for its faces.

2. If you build the truncated octahedron with octet truss space
structures for its faces, you would have the structure built in 
Model 1. Or you could use other space structures such as a
honeycomb of hexagon prisms to strengthen the hexagons 
of the truncated octahedron.

3. To make a two-layer 2b3 rhombicosidodecahedron, 51/2 feet 
in diameter, start by visualizing the form. Each vertex is of the 
form (3, 4, 5, 4) with edges of length 2b3. Surrounding every triangle
are three squares. Surrounding every pentagon are five squares.
Surrounding every square are two triangles and two pentagons
oppositely positioned.

Make three different kinds of space-structure modules, one for each
kind of face.The space-frame modules are truncated pyramids,
truncated at the half-height level to reveal an n-gon of size b3.The
pentagonal pyramids have the form of 2b3 icosahedron caps.The
triangular pyramids have the form of one twentieth of an
icosahedron.The square pyramids have the form of one sixth 
of a cube.

The bases of the space-frame modules face outward, and their edges
are shared with the neighbors.The edges of the inner n-gons are not
shared; they connect using r2s around every triangle and y3s around
every pentagon.

One strategy is to make the pentagonal and triangular modules
separately, then build the connecting squares, which assembles the
other modules. Just over half a sphere makes a good-sized dome.
One pentagon can be left open as a doorway.

Two-Layer Domes18.3
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A. Pillars Another approach you might try is a flat slab of some space
structure standing on pillars.The result is like a table with legs.You
can also put a partial dome on pillars to raise it up.A difficulty with
these approaches is that the pillars are critical weak points; bumping
into one can destroy the entire structure.

B. A Zonish Dodecahedron Expand a regular dodecahedron with
yellow zones in ten directions.

C. A Zonish Icosidodecahedron Expand an icosidodecahedron with
yellow zones in ten directions.

D. A Zonish Cuboctahedron Expand a green cuboctahedron with 
four yellow three-fold axis directions.

This dome is based on a 2b3 icosahedron
expanded with ten y3 zones, with 
one b3 diagonal added to each rhombus.

Connection





Students find the coordinates of the vertices of an icosahedron centered at the
origin and use them in a variety of ways.They apply the same techniques to
the dodecahedron.

Goals
To find the Cartesian coordinates of the vertices of the Platonic
solids and various Archimedean solids

To use Cartesian coordinates to determine lengths in a polyhedron

Prerequisites
In addition to Units 7, 9, 11, and 13, students should know the distance
formula.

Notes
In this unit, we use b1 as the unit and write coordinates as pure numbers in
terms of b1.

19.1 Vertex Coordinates

The questions in this activity are written assuming a 2b1 icosahedron, but
there are advantages to making a larger model: Using a 2b2 icosahedron makes
it possible to build the dual dodecahedron right on the same model; using 
2b2 or 2b3 makes it easier to reach inside the polyhedron as needed; and
asking some groups to use b2 or b3 will make your materials go further.
However, using a larger model and b1 units leads to complex algebraic
manipulations. If you use a 2b2 or 2b3 icosahedron, just use b2 or b3 as the
unit of length so that numerically the edge is always of length 2.

Additional struts can sometimes be placed inside the polyhedra, parallel to the
axes, in order to make the coordinates of the vertices more obvious.

If your students have access to programmable calculators, they can write a
short program to evaluate the distance formula with specific inputs.

U
N

IT

Zome Geometry Unit 19 Coordinates 149

Coordinates



19.2 Point Operations

Students will use points in three-dimensional space as objects.The notation 
p = (x, y, z) is used to designate these objects.They can be the arguments and
results of mathematical operations. Students will use scaling, addition,
averaging, and weighted averaging to determine the vertices of various
polyhedra.The activity serves as a gentle introduction to vectors and helps
students to develop an appreciation that mathematical operations may
concern objects other than simple numbers.

150 Unit 19 Coordinates Zome Geometry
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Challenge
Make a 2b1 dodecahedron and hold one vertex. Find the distances
between the one vertex and all the other vertices.

In the 1600s, the French mathematician René Descartes (1596–1650)
discovered that coordinate systems can be used to identify points in a
plane or in three-dimensional space. Certain problems are easier to solve
using coordinates than by Euclidean proof techniques. In the plane,
x- and y-coordinates suffice to identify a point. In three-dimensional
space, three coordinates, (x, y, z), are needed.Today, computer graphics are
among the many uses of coordinates.

1. Build a 2b1 cube.

Q1 What are the coordinates of the vertices of a cube of
edge length 2 centered at the origin and oriented parallel
to the axes? 

There is one vertex in each of the eight octants of the coordinate system,
so every combination of plus and minus signs occurs once.A shortcut
way to write the coordinates is (±1, ±1, ±1).

Q2 What would the coordinates be if the cube had edge 1 but was
still centered at the origin?

Q3 Find the coordinates of the vertices of a tetrahedron centered at
the origin. (Hint: Orient and scale the tetrahedron in such a
way as to be able to use the coordinates of the vertices of a
cube to help you.) 

2. Build a 2b1 icosahedron. Connect a pair of edges to form a rectangle.

3. Build two more rectangles by connecting pairs of icosahedron edges,
making them perpendicular to the first rectangle and to each other.
This will help you see where to place your axes.

4. Build x-, y-, and z-axes so that the icosahedron is centered at the
origin and each of the three rectangles is in a coordinate plane.You
need to decide which axis is which. Hold the icosahedron in front of
you, with one edge resting on the table going from left to right.Add
some scaffolding at the bottom to keep it balanced on the edge. Call
the horizontal axis going to the right the positive x-axis. Call the
horizontal axis going away from you the positive y-axis. Call the third
axis, going vertically up, the positive z-axis.
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Q4 What are the coordinates of the vertex at the left end of the top
edge in terms of b1, b2, or b3?

Q5 Once a unit of length is chosen, coordinates can be written in
terms of that unit.What are the coordinates of that same vertex
if b1 is the unit?

Q6 Assuming a unit of b1 implicit in every coordinate, write the
coordinates of all 12 vertices. Feel free to write ± if that helps
make the list more compact.

The distance between two points (x1, y1, z1) and (x2, y2, z2) can be found
with the help of the Pythagorean theorem. It is given by the distance
formula:The distance between two points (x1, y1, z1) and (x2, y2, z2) is 

�(x1 – x�2)2 + (�y1 – y2�)2 + (z�1 – z2)�2�.

Q7 Use the distance formula to find the length of two icosahedron
edges: the edge that is bisected by the positive x-axis and the
edge from (1, 0, τ) to (0, τ, 1).

5. Temporarily ( just for Question 8) rotate the icosahedron 90 degrees
about the x-, y-, or z-axis.

Q8 Now what are the coordinates of the vertices?

6. Build a 2b1 dodecahedron, look for rectangles in it, and use them to
orient the dodecahedron in such a way as to have conveniently
located axes. Build the axes.

Q9 What are the coordinates of the vertices of the dodecahedron?

Q10 Use the distance formula and the coordinates of the vertices of
the dodecahedron to confirm the distances you found in the
Challenge.
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Challenge
Using the coordinates you found for the vertices of Platonic solids, find the
coordinates of the vertices of one of the Archimedean solids.

Each triple of three numbers is a point. Two points can be added or a point
can be scaled to determine the location of a new point.

The distance from point p to the origin is symbolized as |p|.To find |p|,
use the formula for the distance between the point p and (0, 0, 0).

Q1 In a 2b1 cube centered at the origin, use coordinates to determine
the distance from the origin to the vertices.

Q2 In a 2b1 dodecahedron centered at the origin, use coordinates to
determine the distance from the origin to the vertices. Explain
why two vertices suffice.

Scaling each coordinate scales a point. Given a number, c, and a point,
p = (x, y, z), multiplying the number times the point gives a resulting point,
written cp = (cx, cy, cz). It is calculated by multiplying each coordinate
separately by c. For example, if p = (1, 1, –1), then 5p = (5, 5, –5).
Geometrically, 5p is a point five times as far from the origin as p but 
on the same line from the origin. If each of a cube’s vertex points is
multiplied by c, the results are the vertices of a cube scaled by c, still
centered at the origin.

Q3 What are the vertex coordinates of an icosahedron that is
inscribed in a unit sphere?

To find the sum of two points, p1 = (x1, y1, z1) and p2 = (x2, y2, z2), sum
coordinates separately.This gives a point

p1 + p2 = (x1 + x2, y1 + y2, z1 + z2)

Geometrically, the sum gives the fourth vertex of a parallelogram that 
has p1, p2, and the origin as its other three vertices. For example, the top
two vertices of our icosahedron are (1, 0, τ) and (–1, 0, τ), so their sum is
(0, 0, 2τ), which is directly above the origin.

1. Build the parallelogram that represents the preceding example of
summing points.

The average of two numbers is half their sum; it is halfway between them
on a number line. Similarly, if p1 and p2 are the endpoints of a line segment,
then their average, (1/2)(p1 + p2), gives the midpoint of the segment.
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Q4 If p1 and p2 are the endpoints of the top edge of the icosahedron,
where is the average, (1/2)(p1 + p2)? 

Q5 If p1 = (1, 1, –1) and p2 = (1, 1, 1) are two endpoints of an edge
of your cube, what is the midpoint of that edge?

2. Truncating a cube to its edge midpoints gives a cuboctahedron 
(3, 4, 3, 4). Build one by adding g1s to your 2b1 cube and then
removing the extra b1s.

Q6 What are the coordinates of the vertices of your
cuboctahedron? Use ± to keep your answer compact.

Q7 The midpoints of the edges of an icosahedron are the vertices
of an icosidodecahedron (3, 5, 3, 5). Compactly list the
coordinates of the 30 vertices of an icosidodecahedron.

If p1, p2, p3, . . . , pn are the vertices of a regular n-gon, then their average,
(p1 + p2 + . . . + pn)/n, is the center of the n-gon.

Q8 What is the center of the cube face with vertices (1, 1, 1),
(1, 1, –1), (1, –1, 1), and (1, –1, –1)?

Q9 The centers of the faces of your cube give the vertices of a
regular octahedron.What are the coordinates of the
octahedron’s vertices?

You will find the centers of two specific icosahedron faces. First, find
three specific edges. Call the edge that is bisected by the positive x-axis
the x-edge, and similarly define the y-edge and the z-edge.

Q10 Find the coordinates of the center of the face that has the 
x-edge as one edge and has one vertex on the z-edge.Then
find the center of the face that touches the x-edge, the y-edge,
and the z-edge.

Q11 By duality, the center-points of the icosahedron’s faces give the
vertices of a dodecahedron. So the two points just determined
are two of the vertices of a dodecahedron. But it is scaled
differently from the 2b1 dodecahedron whose vertices you found
earlier. Find the scale factor that scales these coordinates to the
2b1 dodecahedron.

The weighted average (1/3)p1 + (2/3)p2 gives a point two thirds of the way
along the segment from p1 to p2. It is closer to p2 because p2 is given 
more weight.
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Q12 The truncated icosahedron (5, 6, 6) is derived by creating
vertices at the 1/3 and 2/3 points along the icosahedron’s edges.
Find coordinates of two vertices of the truncated icosahedron,
derived from the top edge of the icosahedron.

3. Build a 3b1 cube and a regular tetrahedron inscribed in it. Orient it so
that one of the tetrahedron’s vertices is at �3/2, 3/2, 3/2�.
Q13 What are the coordinates of the vertices of the truncated

tetrahedron?
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A. Rotating the Cube We saw a cube of edge 2 centered at the origin,
with vertices (±1, ±1, ±1). If you rotate that cube 45 degrees about
the z-axis, it is still a cube of edge 2 centered at the origin.What are
its vertices?

B. Rotating the Icosahedron In the coordinates of the icosahedron,
study how the three entries shift from one group to the next.The
change (a, b, c) → (b, c, a) → (c, a, b) → (a, b, c) is the action of a
three-fold rotation axis. Can you find the axis by studying the
coordinates?

C. Fifteen Rectangles In a dodecahedron with edge length b1, you can
insert two b3s to connect two opposite edges, making a rectangle
concentric with the dodecahedron.A rectangle of this shape is called
a τ2 rectangle because the ratio of its sides is equal to τ2. It is easy to
construct three mutually perpendicular τ2 rectangles within one
dodecahedron. If you try to continue this, to make a compound of all
15 τ2 rectangles in a dodecahedron, you run into a problem of
intersecting struts.The solution is to scale up and divide the larger
struts to have nodes at the intersection points. Make a dodecahedron
of edge b2 or b3, and construct all 15 concentric τ2 rectangles in it.
Are you surprised by what forms in the center? If you then remove
that inner figure, what do you have? If on the other hand you remove
the original dodecahedron’s edges, what do you have? 

D. Three Rectangles and a Cube Build three concentric and mutually
perpendicular τ2 rectangles with short side 2b1.Then add a concentric
cube with side 2b2 (and faces parallel to the rectangles).This will give
you a naked dodecahedron:All the vertices will be there, but not all
the edges.To build such a figure, start with a center ball, and use a set
of three b1 axes centered at that ball to serve as scaffolding for your
rectangles. Use yellow struts to support the vertices of the cube.
Can you do this in a way that does not allow the dodecahedron to 
be built?

E. Parallelepiped Theorem A parallelepiped is a polyhedron with 
six parallelograms as faces. Like a slanted, squashed cube, it has 
twelve edges and four diagonals through its center. Prove that the 
sum of the squares of the lengths of the four diagonals of any
parallelepiped is equal to the sum of the squares of the lengths of 
the twelve edges. (Hint: Put one vertex at the origin, use nine
variables, such as (x1, y1, z1), to name the coordinates of the 
three adjacent vertices; then use the distance formula to express 
the theorem as an equation in the nine variables.)
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F. Computer Visualization If you have access to software that produces
three-dimensional graphic displays of given (x, y, z) points, display
some of the preceding polyhedra.

G. Truncating To get Archimedean solids with regular faces, the 
one-third points of an edge are appropriate for truncating Platonic
solids composed of triangles, but not squares or pentagons.Why?
What weighted average is appropriate for finding the vertices of the
truncated cube? 

H. Soccer Ball Dimensions If you wanted to make a soccer ball by
sewing together cloth pentagons and hexagons, you could plan its 
size if you imagine a truncated icosahedron inscribed in a sphere 
and calculate the ratio of the radius to the edge length.The earliest
recorded calculation of this ratio is by the fifteenth-century painter
and mathematician, Piero della Francesca (ca. 1410–1492), who
studied the truncated Platonic solids. He lived before Descartes,
and so used other methods, but you can find the answer 
using coordinates.
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The Platonic and Archimedean solids are generalized to regular polyhedra
whose faces are self-intersecting polygons and then to uniform polyhedra.
These are three-dimensional versions of two-dimensional self-intersecting
polygons, which are introduced first.

Goals
To see the analogy between self-intersecting polygons and 
self-intersecting polyhedra

To stimulate spatial visualization

To build some beautiful structures

Prerequisites
Students need experience with Units 2, 3, 11, and 12.

Notes

20.1 Self-Intersecting Polygons

Uniform self-intersecting polygons are introduced; they are the 
two-dimensional analogs of self-intersecting polyhedra.

20.2 The Kepler-Poinsot Polyhedra

This activity is long, so plan to take extra time.The ending consists of
questions that can be answered during the next class period if the models 
can be preserved.You might want to have one group build the second 
model for the great dodecahedra, one group build the third model for the 
great dodecahedra, one group build the small stellated dodecahedron 
(great icosahedron), and another build the great stellated dodecahedron.
The great stellated dodecahedron is on the color insert.

You might want to share this history with your students.The German
astronomer Johannes Kepler (1571–1630) recognized that pentagrams are
regular polygons and studied the two stellated dodecahedra.Two hundred
years later, the French mathematician Louis Poinsot (1777–1859) discovered
the great dodecahedron and the great icosahedron. He recognized that they
are the duals of Kepler’s two stellated dodecahedra.

U
N

IT
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20.3 Uniform Polyhedra

For the Challenge, make sure students realize that when the turtle turns 
120 degrees, the interior angle it traces is 60 degrees.

The names of the uniform polyhedra pictured here are in the index.
Your students might be interested in knowing that the search for the
uniform polyhedra involved many people over many years. Forty-one of
the easy-to-find ones were published in a paper in 1881.The last 12
were discovered in the 1930s, but the first complete list wasn’t published
until a 1953 paper by H. S. M. Coxeter and others.The list wasn’t proven
to be complete until a computer search by John Skilling in 1975.
Polyhedron Models, by Magnus J.Wenninger, shows paper models and
templates for all of them, and his book Dual Models does the same for
their duals.

160 Unit 20 Self-Intersecting Polyhedra Zome Geometry
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Challenge
Create interesting Zome designs consisting of the diagonals of 
regular polygons.

A pentagram is a symmetric five-pointed 
star—a polygon with five vertices and five
edges. It is regular because it has equal sides,
equal angles, and five-fold symmetry. It is a
self-intersecting polygon, meaning some of 
its components cross through each other.

1. Make a Zome pentagram.

Only the outermost zomeballs of a Zome
System pentagram correspond to its actual vertices.There are also 
five inner balls that are not vertices; they are just places where the 
edges cross each other—points of intersection.You should think of 
each b2 + b1 + b2 edge as a single edge.

Q1 How many edges does a pentagram have? How many vertices?

Even though it has five equal sides and five equal angles, the pentagram is
not the usual regular pentagon.There is a different notation to describe
this kind of figure; it will be presented after you build another example.

2. Make a b2 decagon. Extend each of the ten edges in both directions
by adding 20 b1s.Then 10 zomeballs will connect the extended edges
together.

Q2 Describe the figure you made.

3. Continue extending the edges in both directions, this time adding 
20 b2s.Again add 10 zomeballs to connect the extended edges
together.

Q3 Describe the figure you made, thinking of each 
b2 + b1 + b2 + b1 + b2 segment as a single long edge.

The result is a single regular polygon. It has ten equal edges, ten equal
angles, and ten-fold symmetry. But it is a different type of 10-gon 
from the usual regular 10-gon. In addition to its 10 vertices, there are 
20 interior points of intersection.

Notice that the vertices of this polygon are positioned exactly like 
the vertices of an ordinary b3 10-gon. However, if one follows the 
b2 + b1 + b2 + b1 + b2 edges, they connect every third vertex around 
the circle.This suggests a way that you could draw it on paper.

Self-Intersecting Polygons20.1
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Q4 Draw the polygon you built in Exercise 3.

This polygon is a (10/3)-gon, which means that there are ten equally
spaced vertices and every third one is connected. Generally, an ( n/m)-gon
is a regular polygon with n vertices, each of which is connected to the
vertex that is m vertices over, around the circumference.

Q5 Draw a (7/2)-gon and a (7/3)-gon.

Q6 What is a (7/1)-gon?

Q7 What is a pentagram in this notation?

Q8 What is a (10/7)-gon?

Q9 Consider the (10/7)-gon and also the (5/3)-gon, and propose a
rule about when two (n/m)-gons are identical.

Q10 What happens if you try to draw a (10/2)-gon, a (10/4)-gon, or a
(10/5)-gon?

Q11 What is the interior angle at any vertex of a regular (n/m)-gon?

Self-Intersecting Polygons (continued)20.1
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Challenge
A pentagrammatic prism has pentagrams (five-pointed stars) for bases. It 
can be constructed using five red struts to connect the vertices of 
two pentagrams. Each of the five rectangular sides passes through two 
other sides, so it is a self-intersecting polyhedron. Make other polyhedra in
which some faces will have to cross through each other. Note:The 
Zome System does not have the angles for a pentagrammatic antiprism.

The five Platonic solids are the only five convex regular polyhedra. But if
we allow nonconvex solids with faces that pass through each other, and
faces that are self-intersecting polygons, then there are four additional
regular polyhedra called the Kepler-Poinsot polyhedra.

1. Make a b3 regular icosahedron.

Q1 Look at the Zome regular icosahedron and its 30 edges.Try 
not to see them as forming triangles; instead, see the edges of 
b3 regular pentagons. Imagine these pentagons as surfaces forming
a polyhedron.The pentagons pass through each other. How 
many pentagons are there altogether? How many meet at each
edge? How many meet at each vertex?

The edges and vertices of the icosahedron are the same as those of a
nonconvex regular polyhedron consisting of 12 pentagons that pass through
each other.To distinguish it from the ordinary dodecahedron, which also
consists of 12 pentagons, this polyhedron is called the great dodecahedron. It is
called great because it contains a smaller dodecahedron within it.

This figure shows how the faces intersect, with only
parts of each pentagon visible from the exterior.
There are only 30 edges—the icosahedron edges.
The other lines are lines of intersection, where faces
cross and continue on the inside.To understand this
object, mentally connect five visible isosceles
triangles into a largely hidden pentagon; one such
pentagon is shaded.

There are three different approaches to Zome
models of the great dodecahedron.

a. The icosahedron shows all the edges and vertices of the great
dodecahedron, so it is also a model of the great dodecahedron.

b. A second type of model also shows the lines of intersection that
would be visible where pentagonal faces intersect each other. It
mimics what one sees in a paper model, or the preceding figure.

The Kepler-Poinsot Polyhedra20.2
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c. The third type of model shows all the lines of intersection where
faces intersect, including those that would be hidden inside a
paper model.

2. Complete your edge model into one of these last two types of
models. Look for the small b1 dodecahedron at the center with faces
in the same planes.

Q2 Only the first type of model, which has no lines of intersection,
is appropriate for counting faces, vertices, and edges of the great
dodecahedron. Does Euler’s formula hold for this polyhedron?

3. To make the next Kepler-Poinsot polyhedron, the small stellated
dodecahedron, make a b1 dodecahedron, and erect a b2 pyramid on
each face. (Or, equivalently, take the third type of great dodecahedron
model above and remove its b3 struts.)

One way of seeing these edges is as an elevated dodecahedron. That is an
appropriate name if you think of it as a non-self-intersecting polyhedron
of 60 isosceles triangles with 32 vertices, a dodecahedron that has had a
pyramid erected on each face.

Q3 Look at the same set of edges in a
new way, as the small stellated
dodecahedron, a self-intersecting
polyhedron in which every face is a
pentagram. How many faces, vertices,
and edges does it have? Again, Euler’s
formula is not expected to apply.

Q4 There is another way to see this 
same set of edges as yet a different
self-intersecting polyhedron, the 
great icosahedron. Find it and describe its structure. (What kind of
faces? How many per vertex? How many per edge? How many
vertices and edges?) (Hint: Find an equilateral triangle among
the edges.)

The shading in the figure illustrates one face
plane of the great icosahedron.The lines of
intersection between the triangular faces would
be green struts.You cannot construct this
model in the model of the small stellated
dodecahedron because five green struts would
have to go into one red hole.

The Kepler-Poinsot Polyhedra (continued)20.2
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4. Make a b1 icosahedron. Erect a b2 pyramid on each face.

Q5 See the structure just formed as 
a self-intersecting polyhedron
composed of pentagrams.
Describe its structure.

Q6 If X and Y are a pair of dual
polyhedra, then how are the
numbers of faces and vertices of
X related to the numbers of faces
and vertices of Y?

Q7 Which of the four Kepler-Poinsot
polyhedra are dual pairs?

To better understand the duality of these self-intersecting forms, use the
notation {n, m}, introduced in Unit 3, to refer to a regular polyhedron
consisting of n-gon faces, m at each vertex.

Q8 What is the {n, m} notation for the small stellated
dodecahedron and the great stellated dodecahedron?

Q9 Recall from Unit 3 that {n, m} and {m, n} are a dual pair.
Trusting that this generalizes and considering the dual pairs
discovered in Question 7, what should be the notation for the
great dodecahedron and the great icosahedron?

To make sense of a notation like {5, 5/2}, you
need to think about the notation {n, m} and 
look at the vertices of the great dodecahedron
and great icosahedron.There are five pentagons 
at each vertex of the great dodecahedron, but
they are not arranged in a single cycle, like the
five triangles of an icosahedron. Instead, they 
go around twice—if you truncate the corner,
you will see a 5/2-gon cross section.This is 
what the second position in this notation means.
Similarly, the five triangles at any vertex of the
great icosahedron go around twice.

The Kepler-Poinsot Polyhedra (continued)20.2
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Challenge
Imagine a turtle moves forward 30 steps, turns right 120 degrees,
moves forward 10 steps, turns right 120 degrees, and repeats this 
sequence until it is back at its starting point.What figure does it trace?
Build a Zome model.

1. Using b1s only, build the three structures shown. Each is planar, with
60-degree and 120-degree angles.The lengths of the line segments
are b1 and 3b1 in the first, 2b1 and 3b1 in the second, and b1 and 2b1 in
the third.

Uniform 6-gons

Q1 Describe how each of these models can represent a kind of
hexagon with six vertices. Explain how there are two lengths 
of edges in each, but only one type of vertex.Which balls
represent vertices? 

Look at the uniform 6-gons in the figure as polygons formed by a
sequence of vertices and edges, not as a figure enclosing a particular
region of the plane.

2. Pick any two vertices in a uniform 6-gon and show how the 
model can be rotated or reflected so that the first vertex moves 
to the position of the second while the model as a whole 
appears unchanged.

Like uniform polygons, uniform polyhedra have only one kind of vertex,
and any vertex can be moved to the position of any other by a symmetry
operation (rotation or reflection) that leaves the polyhedron as a whole
appearing unchanged. Uniform polyhedra may have more than one type
of face, just as uniform polygons may have more than one length of edge.
The faces of a uniform polyhedron may pass through each other or
through the polyhedron’s center, just as the edges of the 6-gons above
pass through each other or through the polygon’s center.

The faces of a uniform polyhedron are regular polygons, possibly 
self-intersecting. Special cases of the uniform polyhedra, in which the
faces do not pass through each other, are the Archimedean solids, some

Uniform Polyhedra20.3
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prisms, and some antiprisms. Special cases in which there is only one type
of face are the Kepler-Poinsot polyhedra.The most special cases are the
Platonic solids.

3. Make at least half of an icosidodecahedron (3, 5, 3, 5).

Q2 Look at it in a new way, which involves larger faces that
intersect each other. See a polyhedron in which some faces go
directly through the center.What are those faces? Using the
figure as a guide, describe one self-intersecting polyhedron.

Q3 Using the figure as a guide, describe a different self-intersecting
polyhedron with the same edges as the icosidodecahedron.

4. Make at least a third of a rhombicosidodecahedron (3, 4, 5, 4).

Q4 See its edges in a new manner, which involves larger faces 
that intersect each other.Again, there are two different 
self-intersecting polyhedra with the same edges. Using the
figure as a guide, can you find them both? Remember that
exactly two faces must meet at each edge.

Uniform Polyhedra (continued)20.3
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There are 53 uniform polyhedra, not counting the Archimedean or
regular polyhedra. In addition, there are infinite families of prisms,
antiprisms, and crossed antiprisms, in which the triangular faces cross the
central n-fold axis.

5. Make a b2 + b1 + b2 pentagram. Make one equilateral triangle with
edge b2 + b1 + b2.The pentagram and the equilateral triangle are the
two types of faces in the polyhedron you will now construct. Place
the pentagram flat on the table and hold the triangle slanted above it,
with one edge parallel to one pentagram edge, and with the triangle
crossing the vertical five-fold axis. If properly arranged, the zomeballs
will be parallel, so the flat sides of the parallel blue edges will face the
same way. If they are not parallel, turn over the pentagram or the
triangle.When you find the proper arrangement, remove one edge of
the triangle and add the rest of it to the pentagram, slanting up. Build
four more triangles so there is one from each of the pentagram’s 
five edges. Each triangle will intersect two other triangles.Their tops
will provide the vertices for the second pentagram base.

Study your model of the pentagrammatic
crossed antiprism, and see it as (5/2, 3, 3, 3),
consisting of two pentagrams and 
ten triangles.At any vertex of the base, there
are two triangles that point up—that share
an edge with the lower pentagram. But they
do not share an edge with each other.The
gap between them is filled by a triangle 
that points down. (Its third edge is shared
with the upper pentagram.) The polyhedron
has the same symmetry as a pentagonal
antiprism. Its zigzag of edges forms a self-intersecting skew 10-gon.As the
figure shows, the triangular faces cut deeply through each other.

Uniform Polyhedra (continued)20.3
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A. Crowns Make a regular skew 10-gon from r1s. (Every angle will be the
same as the obtuse angle of a red rhombus.) Extend each edge in both
directions with r2s, and join them with ten new balls.The result is a
type of self-intersecting skew 10/3-gon, which you can wear as a kind
of crown. Can you make a yellow one? How are these crowns related
to crossed antiprisms? 

B. Dual Kepler-Poinsot Pairs Make models of concentric dual pairs for
the Kepler-Poinsot polyhedra.

C. Five Cubes and Three More The compound of five cubes (see 
Unit 11) provides the edges (and vertices) of three more uniform
polyhedra. Study a model and see the edges in new ways.

D. Uniform Polyhedra by Truncation Another technique for finding
uniform polyhedra is to truncate regular polyhedra. Recall that one
can truncate a vertex either partway or to the edge midpoint.

a. Visualize what you get if you truncate the great dodecahedron 
to a depth that its pentagon faces become regular 10-gons.
Remember that truncating a vertex reveals a pentagram (not
pentagon) as the cross section.You can make a model where each
edge of the pentagrams in the result is of size b2 + b1 + b2.You can
begin by making one vertex of a b3 + b4 + b3 great dodecahedron
and truncating it by creating a b2 + b1 + b2 pentagram.

b. What if you truncate the great dodecahedron further, to its edge
midpoints? Again, you can make a model where each edge of the
pentagrams in the result is of size b2 + b1 + b2.You can begin by
truncating (part of ) a 2b4 great dodecahedron.

c. If you truncate the great icosahedron to its edge midpoints, you
get the (5/2, 3, 5/2, 3), with 12 pentagrams and 20 triangles. Make a
Zome model of part of it.

E. One-Sided Heptahedron You may be familiar with the Möbius strip,
a one-sided, one-edged surface discovered by the German
mathematician and astronomer August
Möbius (1790–1868). Surprisingly, there
exists a one-sided heptahedron, a uniform
polyhedron with seven faces and only one
side.To discover it, consider the operations
applied to the icosidodecahedron in
Question 2 of Activity 20.3, and apply them
to the regular octahedron.

Möbius strip
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F. Pentagrammatic Concave Trapezohedron You can make the dual of
the pentagrammatic crossed antiprism. Because the uniform
polyhedron has ten identical vertices, the dual has ten identical faces.
Each face is a kind of arrowhead concave quadrilateral. First make one
face: Make two b2 + b1 + b2 edges. Place them into a zomeball at a 
36-degree angle.Then fill the sharp empty V with a less sharp 
(108-degree) concave V of two b2s.To arrange ten of these into a 
self-intersecting polyhedron, first make a b1 skew 10-gon of the type
that is found as the equator of a regular icosahedron. (This is the same
as the zigzag of a pentagonal antiprism with equilateral sides.) Notice
how the two b1s of your arrowhead are related as two edges of the
skew 10-gon. Complete each such pair of edges into an arrowhead.
(You can make a compound of the dual pair in double scale. If you do,
notice how respective edges are perpendicular, but some would need
to be extended to actually cross.)

G. A Self-Intersecting Rhombic Triacontahedron It is possible to make
a polyhedron bounded by 30 skinny yellow rhombi, with five meeting
at each vertex.The faces and edges will pass through each other. Make
skinny rhombi, each edge of length y1 + y2, with the y1s forming the
obtuse angles and the y2s forming the acute angles. Begin the
polyhedron with five of these, with their acute angles meeting at a
five-fold vertex. Continue by making the other acute vertices into
similar five-fold vertices.As the faces pass through each other, you will
create other five-fold vertices (where five obtuse angles meet, going
around twice) under the original five-fold vertices. It is a kind of
nonconvex zonohedron. If you made the polyhedra in Exploration D,
you can determine which nonconvex uniform polyhedron this is dual
to. [Hint: In the ordinary convex rhombic triacontahedron, the vertices
surrounding any face are of order 3, 5, 3, and 5, and it is dual to the
icosidodecahedron, (3, 5, 3, 5).]

Explorations 20 (continued)
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Some interesting polyhedra were first
presented by artists. This figure shows a
plate from the 1568 book Perspectiva
Corporum Regularium by Wentzel
Jamnitzer, a Nuremberg goldsmith. Notice
that the middle image on the left shows
the external appearance of the great
dodecahedron, over 200 years before
Poinsot described it and understood it
mathematically as a regular polyhedron.

Courtesy of the Bancroft Library, University of
California, Berkeley.





Students are introduced to three families of n-dimensional generalizations 
of polygons and polyhedra.They build three-dimensional models of 
four-dimensional figures.

Goals 
To introduce the fourth dimension

To reason by analogy

Prerequisites
Students need experiences gained from Unit 14, Zonohedra. For Activity 21.3,
students need the experience gained in Unit 19, Coordinates.

Notes
Higher-dimensional geometry goes beyond three-dimensional visualization skills, so
one must often work by extending patterns. Some people develop the ability to
visualize higher-dimensional objects in an intuitive manner. Reassure students that
they do not need to feel a direct, intuitive grasp of the objects. Mathematics is not
about physical reality so much as patterns and relationships.

This unit uses analogy to explore n dimensions, with no attempt at completeness,
merely highlighting some of the more accessible ideas in an introductory manner.
In particular, regular, convex, and dual are not defined here beyond three dimensions.
Students may appreciate knowing that those terms (and more) can be generalized
to n dimensions in ways analogous to the three-dimensional case.

21.1 Hypercubes

As students build the third model of the hypercube, help them notice that the outer
shell is a zonohedron.This is not a coincidence.When you follow the procedure
given for making hypercubes, every face added at each stage is a parallelogram.As a
consequence, the outer surface of these hypercube models is always a zonohedron.

21.2 Simplexes

The two basic approaches for dealing with n-dimensional geometry are analogy
and coordinate methods. Just as analogy was used to generalize cubes to
hypercubes, it is used in this activity to generalize tetrahedra to simplexes.
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21.3 Coordinates and Cross Polytopes

In this activity, students will use coordinates to understand cross polytopes.

21.4 The 120-Cell

Once students have completed Activities 21.1–21.3, you can provide this
information:

The three families—simplexes, hypercubes, and cross polytopes—are
regular convex polytopes in any number of dimensions.They are the
only regular convex polytopes in five or more dimensions. In three
dimensions, we know there are also two other regular convex polytopes,
the icosahedron and the dodecahedron, making five altogether—the
Platonic solids. Interestingly, in four dimensions, there are six regular
convex polytopes. No dimension (except two dimensions, where there is
an infinite number of regular polytopes, the regular n-gons) has more.

We can enumerate all the convex, regular, four-dimensional polytopes in
terms of the number of regular polyhedra that surround each edge.The
constraint here is that the dihedral angles around an edge must sum to
less than 360 degrees.You can verify that these are the only possibilities
for what surrounds each edge:

3 tetrahedra per edge—the four-dimensional simplex, or 5-cell,
composed of 5 tetrahedra.

3 cubes per edge—the four-dimensional hypercube, or 8-cell,
composed of 8 cubes.

4 tetrahedra per edge—the four-dimensional cross polytope,
or 16-cell, composed of 16 tetrahedra.

3 octahedra per edge—the 24-cell, composed of 24 octahedra.

3 dodecahedra per edge—the 120-cell, composed of 
120 dodecahedra.

5 tetrahedra per edge—the 600-cell, composed of 600 tetrahedra.

The first three possibilities are introduced in Activities 21.1, 21.2,
and 21.3.The last three are complex.The 120-cell is constructed in
Activity 21.4; its image is on the color insert. If you don’t have enough
materials to build the whole 120-cell, you can build a part of it, by
building only above the base of the central dodecahedron.The 600-cell
is built in Explorations 21.

For a deeper introduction to n-dimensional geometry, see Beyond the Third
Dimension, by Thomas Banchoff. For interested students, you might
recommend the book Flatland, by Edwin Abbott.
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Challenge
Make a dodecahedron in which six of the faces are squares and six 
are parallelograms.

Hypercubes are n-dimensional analogs of the cube.They are special
polytopes, the general term for polygons, polyhedra, and so on, of any
number of dimensions.A polygon is a two-dimensional polytope; a
polyhedron is a three-dimensional polytope.

1. Place these four things in a row: a single zomeball, a b1 strut with a
zomeball at each end, a b1 square, a b1 cube.

These are zero-, one-, two-, and three-dimensional hypercubes.
The following procedure can be used to make an n-dimensional
hypercube from an (n – 1)-dimensional hypercube: Make two parallel
copies of the object that is one dimension lower, and connect all pairs of
corresponding vertices with struts, using a new direction (perpendicular
to all previous ones).

Q1 Find a pattern for the number of vertices in an n-dimensional
hypercube.

Q2 Extending the pattern, how many vertices do you expect there
to be in a four-dimensional hypercube?

Q3 Find a pattern for the number of edges in an n-dimensional
hypercube. For a general formula, notice in your four
hypercube models that each vertex touches n edges. How many
edges do you expect there to be in a four-dimensional
hypercube?

You cannot make a true model of the four-dimensional hypercube
because you exist in a three-dimensional universe; but you can make
various models of the projection of a hypercube to three dimensions.
Consider how to make a two-dimensional projection of the 
three-dimensional cube.Three ways to do this are shown in the figure.

Three ways to draw a cube

Hypercubes21.1
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One method puts a face center in the center of the drawing and preserves
one four-fold axis of symmetry.Angles and lengths are distorted, since
some squares appear as trapezoids, but no lines cross.A second method
puts a vertex near the center of the drawing and preserves one three-fold
axis of symmetry.Angles are distorted, since the squares appear as rhombi,
but you can arrange to have edge lengths preserved.Two opposite vertices
are nearly superimposed, and the figure violates the three-fold symmetry
just slightly, in order to show the two vertices as distinct.A third method
shows two parallel squares as identical squares, in order to keep some of
the angles unchanged.You will make 3 three-dimensional models of the
four-dimensional hypercube, each analogous to one of these methods.

2. Make a b1 cube and a b3 cube. Place the b1 cube in the center of the
b3 cube and connect the two using eight y2s.

Q4 How do the numbers of vertices and edges of this first
hypercube correspond to the patterns in Questions 2 and 3?
How does the procedure for this model compare to the
procedure for making an n-dimensional hypercube from an 
(n – 1)-dimensional hypercube? 

Q5 How is this hypercube analogous to the first drawing of a cube?

3. Make a y3 rhombic dodecahedron. Place a zomeball at its center
connected (with four y3s) to four of the three-fold vertices in such a
way that the four make as great an angle as possible with each other.
(The other endpoints of these four struts are four vertices of an
imagined regular tetrahedron.) Notice how each strut is a three-fold
axis for the set of four and how the rhombic dodecahedron has been
dissected into four obtuse rhombohedra.There are four remaining
vertices that contact only three struts. Connect each of them to a
second zomeball at the center.The two zomeballs near the center will
be pushing against each other, but the struts are flexible enough to
allow this slight distortion.

Q6 How does the second version of a hypercube correspond to the
patterns in Questions 2 and 3? How does the procedure for this
model compare to the procedure for making an n-dimensional
hypercube from an (n – 1)-dimensional hypercube?

Q7 How is this second hypercube analogous to the second drawing
of a cube?

4. Make two interlocking cubes of the same size connected by eight
parallel diagonal lines. (If you have trouble connecting the two cubes,
check that the corresponding struts have the same orientation.)

Hypercubes (continued)21.1
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Q8 How is this third hypercube analogous to the third drawing 
of a cube?

Q9 How does your answer to Question 8 answer the Challenge?

Q10 Review the sequence of hypercubes and notice:Two points
bound a segment. Four segments bound a square. Six squares
bound a cube.What comes next in this sequence?

To build a cube, one can think of placing three squares around every
vertex.The analogous process—with everything shifted up a dimension—
is that to build a four-dimensional hypercube, one thinks of placing three
cubes around every edge.The three-dimensional polyhedra assembled
into a four-dimensional polytope are called its cells. In a polyhedron,
two faces meet at each edge; in a four-dimensional polytope, two cells
meet at each face.The cube is possible because the three squares’ vertex
angles sum to less than 360 degrees when laid flat in a plane; so in 
three dimensions, they can be rotated (about edges) to join together.The 
four-dimensional hypercube is possible because the three cubes’ dihedral
angles sum to less than 360 degrees if put together around an edge in 
3-space, so in 4-space they can be rotated (about faces!) to join together.
In our three-dimensional models, of course, the dihedral angles are
distorted to fit in 3-space, but you can see that each edge is a part of
three different cubical cells.

For a final model of the hypercube, you will
break some of its connections and unfold it so
that its cells lie flat in three dimensions. First
consider that the net of the cube shows six
undistorted squares in a plane. It is understood
that some of the cube’s edges were cut and
appear as two separated square edges in this
representation. Similarly, some of the cube’s
vertices appear as two or three points in the
figure.The edges are folded and taped to put
the cube back together.

5. Make a blue cube. Surround it by six more blue cubes, one attached
to each face. Rest it on any square face, and build one more cube on
the top square face.

Q11 How is this model a four-dimensional analog to the 
unfolded cube?

Hypercubes (continued)21.1
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Challenge
Make a structure using exactly five zomeballs and ten struts, in which every 
pair of balls is directly connected with a strut.Then try six, and then seven
zomeballs, with every pair connected.

Simplexes are n-dimensional generalizations of the tetrahedron.At each
dimension, they are the simplest possible polytope.

1. Place these four things in a row: a single zomeball, a g1 (or b1) strut with 
a zomeball at each end, a g1 (or b1) equilateral triangle, and a g1 regular
tetrahedron (or a b1 and r1 tetrahedron).

These are zero-, one-, two-, and three-dimensional simplexes.To make each
item from the previous one, add a new vertex that connects to each of the other
vertices with new struts, keeping the figure as symmetric as possible.

Q1 Find a pattern for the number of vertices in an n-dimensional simplex.

Q2 How many vertices do you expect there to be in a four-dimensional
simplex? 

Q3 Find a pattern for the number of edges in an n-dimensional simplex.

Q4 How many edges do you expect there to be in a four-dimensional
simplex?

2. Make a regular tetrahedron and use yellow struts to connect its vertices to a
fifth ball at the center. (If you don’t have green struts, make a tetrahedron of
b3s and r3s and use three b2s and a y2 to connect its vertices to the center
zomeball.) Notice that each edge is surrounded by three tetrahedra and that
there is an edge connecting every pair of vertices.

Q5 How does this model fit the procedure for making each simplex from
the previous one and the patterns you found in Questions 1 and 3?

Q6 Two points bound a segment.Three segments bound a triangle. Four
triangles bound a tetrahedron.What comes next in this series?

Q7 A two-dimensional drawing of the four-dimensional simplex will
consist of five dots, with a line connecting every pair.What is the most
symmetric way to draw this?

Q8 In that drawing, count the tetrahedra.Verify that three distinct ones
share each edge and that four distinct ones meet at each vertex.

3. Build an unfolded model of the four-dimensional simplex.The Zome
System does not have the angles to build this exactly, but you can make an
approximation.

Simplexes21.2
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Challenge
What is the dual to the four-dimensional hypercube? (Hint:To draw the dual of
a four-dimensional polytope, place a vertex in the center of each cell, and draw
an edge connecting vertices whenever two cells are adjacent.)

A square of edge length 2, centered on the origin, has its four vertices at (1, 1),
(1, –1), (–1, 1), (–1, –1).These four coordinates can be written as (±1, ±1).The
coordinates of the eight vertices of a cube of edge length 2, centered on the
origin, are (±1, ±1, ±1).The pattern continues. (For a four-dimensional point,
use four coordinates.)

Q1 Give several pairs of vertices of such a cube that are connected by an
edge. Give several that are not. How can you tell at a glance whether a
given pair belongs on the first or second list?

Q2 Given two vertices of a hypercube, how can you tell if they are
connected by an edge? (Hint: Every edge is parallel to one of the axes.)

Given two points in four-dimensional space, (w1, x1, y1, z1) and (w2, x2, y2, z2),
you can define the distance between them, by analogy from the two-dimensional
and three-dimensional formulas, as 

�(w1 – w�2)2 + (�x1 – x2�)2 + (y�1 – y2)�2 + (z1� – z2)2�

Q3 Pick any two edges of the four-dimensional hypercube with vertices
(±1, ±1, ±1, ±1) and find their length.

Q4 How long is the longest diagonal of a four-dimensional hypercube?

Cross polytopes can be described by the coordinates of their vertices.A cross
polytope has all of its vertices on the coordinate axes, at unit distance from the
origin. So the two-dimensional cross polytope is a square, with vertices (±1, 0)
and (0, ±1).The three-dimensional cross polytope has vertices at (±1, 0, 0),
(0, ±1, 0), and (0, 0, ±1). (There is one vertex in the center of each face of the
cube of side length 2 centered on the origin.) Every vertex connects to all the
others except the one opposite it on the same axis.

Q5 Which polyhedron is the cross polytope of three dimensions?

Q6 How many vertices and edges are there in an n-dimensional cross
polytope?

Q7 How long is an edge of the n-dimensional cross polytope? Assume 
n-dimensional coordinates generalized from the cross polytopes above.

With more analysis it can be shown that the four-dimensional cross polytope
consists of 16 regular tetrahedra, joined so that four surround each edge. It is the
dual to the hypercube. See Exploration C.

Coordinates and Cross Polytopes21.3
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Challenge
Find as many Zome pentagons as you can that have mirror symmetry.

The 120-cell is a regular convex four-dimensional polytope composed of
120 regular dodecahedra joined three around each edge.The following
projection of this solid into three dimensions is centered on one undistorted
dodecahedron, surrounded by other dodecahedra that are flattened.There
are five layers of dodecahedra, each more flattened than the layers inside it.

To prepare for building the 120-cell, make one of each type of
dodecahedron.

1. Make a b2 regular dodecahedron.This is the central cell of the model.

2. Make a slightly flattened dodecahedron consisting of two opposite 
b2 pentagons, an r2 zigzag equator, and ten y2s connecting the equator to
the pentagons.This dodecahedron has one axis of five-fold symmetry.
Ten of its faces are of the form b2-y2-r2-r2-y2. (If you have trouble, try
turning over your first pentagon.) 

3. Make a slightly more flattened dodecahedron with a three-fold axis of
symmetry. Join three b2-y2-r2-r2-y2 pentagons together around one
vertex, by sharing their red edges. In the three places where two y2s
touch, make a y2-y2-r1-b2-r1 pentagon. (Keep each pentagon in the plane
defined by its two y2s.) This gives half the dodecahedron; make the
other half so that it is symmetric, with a three-fold axis.

4. Make a rather flattened dodecahedron with five-fold symmetry,
consisting of two opposite b2 pentagons, a y2 zigzag equator, and ten r1s
connecting the equator to the pentagons.Ten of its faces are of the
form y2-y2-r1-b2-r1.

5. Make a planar construction consisting of two b2-y2-r2-r2-y2 pentagons
sharing the b2. In the two y2-y2 concavities, add two r1s and a b2 to 
make y2-y2-r1-b2-r1 pentagons.The result is a flat construction of 
four pentagons. Four of its exterior sides are of the form r1 + r2.

These five models are progressively more flattened dodecahedra.The last is
totally flattened and shows only four faces.Think of it as a dodecahedron
standing on a edge (two-fold axis vertical) squashed so that the top 
four faces lie above the bottom four and the four side faces are collapsed
into one line each (the r1 + r2 lines).

6. Hold the regular dodecahedron so that you see it like the fifth,
completely flat construction.

The 120-Cell21.4
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Once you understand these five components, you can build the 120-cell
with components meeting pentagon-to-pentagon.The whole has
icosahedral symmetry; the symmetry axes of the components are lined up
with the axes of the whole.

Do not build a number of the components and attempt to join them.
Instead, keep them in mind as you build piece by piece. Start at the core
and work outward, layer by layer, turning the partial structure over as you
work on each layer.

7. Use the regular dodecahedron, type 1, as the central core. Surround it
with 12 dodecahedra of type 2. In each of the concavities on three-fold
axes, build a dodecahedron of type 3.This creates, on the five-fold axes,
new cavities that are filled in by dodecahedra of type 4. Finally, you will
see that the outer surface is covered with flat hexagons of type 5.

Recall that all the cells are regular dodecahedra in the four-dimensional
object.They appear distorted because you flattened the model to fit in 
three dimensions.

To account for the 120 dodecahedra, you must interpret the model as
folding over itself. Each of the dodecahedra of types 1 to 4 represents 
two overlapping dodecahedra that happen to coincide.This is analogous to
projecting a cube along one of its edge directions so that two opposite faces
exactly overlap and one sees only a square. Four sides of the cube would be
flattened into lines, which sit on the outer four sides of the square. Here, the
flat dodecahedra of type 5 correspond to the squares flattened into lines.
They are not doubled; they are what join the two overlaying structures.
With this understanding of the exterior surface, one can also verify that
three dodecahedra surround each edge and four surround each vertex.

Q1 Fill out the table, and check that 120 cells are represented:

The 120-Cell (continued)21.4

Zome Geometry Unit 21 The Fourth Dimension 181

©2001 Key Curriculum Press

1

2

3

4

5

Total

Number in model
Number of four-dimensional 

cells represented

— 120

Cell type



A. 5D Hypercube Make a model of a hypercube in five or more
dimensions.

B. 5D Simplex Make a model of a five-dimensional simplex.Then try a
six-dimensional simplex. (Hint: Use 7 balls and 21 struts connected so
that every pair is directly connected with no struts crossing; some
green struts are needed.)

C. Tetrahedra in the Four-Dimensional Cross Polytope There are 
16 regular tetrahedra in the four-dimensional cross polytope.Where
are they? To find one tetrahedron, find four equidistant vertices.

D. The 600-Cell A model of the 600-cell can show how five tetrahedra
surround each edge.At its core is a b2 icosahedron divided into 
20 almost-regular tetrahedra.To its exterior, add another layer of
tetrahedra using y2 slanting edges.That makes two layers of tetrahedra
centered over the three-fold axes. Connect the new vertices to each
other with b2s, making a third layer: 30 tetrahedra over the two-fold
axes.With r1s and r2s, add 60 more tetrahedra in groups of five around
the five-fold axes.This produces a rhombic triacontahedron. On the
triacontahedron's rhombi, add r1s and y2s as the slanting edges of 30
rhombic pyramids, that is, 60 tetrahedra.Then connect their peaks
using 60 b2s (that outlines an icosidodecahedron) to complete 60
tetrahedra around the 5-fold axes and 20 over the 3-fold axes.The
missing tetrahedra are all flattened on its surface.

E. Another Hypercube Projection You made three-dimensional
models of the four-dimensional hypercube that were centered on a
cube and centered on a vertex. Find a symmetric model centered on
an edge. (Hint:Two opposite edges will end up pushing against each
other at the center of the model.)

F. Euler’s Theorem in Four Dimensions Based on the simplex 
and hypercube, conjecture an analog to Euler’s theorem for 
four-dimensional polyhedra.

Explorations 21
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This is a hands-on introduction to stellated polyhedra.

Goals
To introduce stellations

To look in a new way at polyhedra students have built 

Prerequisites
Students will have encountered some of these models in Units 2, 3, 5, 12,
and 21.They need to be familiar with the rhombic dodecahedron and the
rhombic triacontahedron.The Challenge for Activity 22.1 assumes familiarity
with Unit 19.

Notes
The word stellate is from the Latin for star. To make a polyhedron that is
starlike, start with any polyhedron and erect any pyramid on its faces.A 
few authors call this a stellation, but it is more accurately called an 
elevated polyhedron. For a stellation, the face planes of the core polyhedron 
are extended. (A few other authors prefer a stricter sense and define a
stellation as a polyhedron that extends the edges of the core polyhedron.)

22.1 Stellated Polyhedra 

Green struts are required.The polyhedron in Exercise 1 was called a 
concave equilateral deltahedron in an exploration in Unit 2, but here you 
see it in a new light.The word enantiomorph, used in Exercise 3, was 
defined in Unit 5 as one of the two mirror images of a chiral object. For
pictures and discussion of all the stellations of the icosahedron, see 
The Fifty-Nine Icosahedra, by H. S. M. Coxeter.

22.2 More Stellations

In the activity, students construct all three stellations of the rhombic
dodecahedron and two of the many stellations of the rhombic
triacontahedron.The compound of five cubes, introduced in Unit 11, is 
seen in a new light as a stellation of the rhombic triacontahedron, as is a 
self-intersecting zonohedron from Exploration 20G.
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Challenge
The small stellated dodecahedron {5/2, 5}, the great dodecahedron 
{5, 5/2}, and the great stellated dodecahedron {5/2, 3} built in Unit 19
each has 12 faces. If each face was made of an opaque material and you
sat at the center (with a flashlight), what would you see?

Given a polyhedron X, a “stellated X” has five properties:

It has an X at its core.

It has the same number of faces as X.

Its faces are in the same planes as the faces of X.

It has the same symmetry as X.

All of its faces are identical.

Some stellated polyhedra can be created by building a pyramid on each
face of a given polyhedron, taking care that the height of the pyramids is
chosen such that their faces lie in the planes of the original faces.

Q1 The stella octangula can be seen as a stellation of what
polyhedron? Verify the five properties.

In a stellation, one face may consist of several disconnected facets in the
same plane. Here is an example where each face is disconnected and
where the stellation does not involve pyramids on the faces of the
polyhedron that is being stellated:

1. Build at least half of a regular dodecahedron.Then erect pyramids on
the inside of each face. Use only one strut length so that the result
can be seen as 60 equilateral triangles.

2. Find three equilateral triangles that are in one plane.The group of
three triangles is considered one face.

Q2 Thinking of three disconnected triangles in a plane as a single
face, how many faces are there? Each of these faces is on the
plane of a face of a certain Platonic solid.Visualize this solid,
and name this stellation.

In many cases there are different stellations possible from one initial
polyhedron; for example, there are 59 different stellations of the
icosahedron. In Exercise 3, once again, each of the 20 faces is an
assemblage of disconnected triangles.

Stellated Polyhedra22.1
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3. Build a b3-b2-g2 triangle and a b2-g1-g2 triangle, both in the yellow
plane. Construct an irregular tetrahedron consisting of two of the first
type and two of the second type. (It can be made in either of two
enantiomorphs.) 

4. Build a b3 dodecahedron. Using each dodecahedron edge, build one
of these irregular tetrahedra inside the dodecahedron—all 30 of the
same handedness.They contact each other only at the dodecahedron
vertices.

5. Study this form and see how every facet is in the plane of an
imaginary central icosahedron.

Q3 Make a sketch of one face. (Hint:There are six triangles in 
a face.)

Q4 What polyhedron do the vertices on the interior of the 
model outline?

Another stellation of the icosahedron is created by building a low
pyramid with green slanting edges over each face of the icosahedron. For
the lengths to work out, you start with an icosahedron of edge b1 + b3.

6. Make a pyramid with an equilateral b1 + b3 triangular base and 
g2 slanting edges. Build three more of these around the first so that
the blue triangles meet as faces of an icosahedron.

This is a portion of a stellated icosahedron.You can see that the plane of
the central triangle is extended into an irregular green 6-gon.

7. Make one of these planar, green, irregular 6-gon faces.You can use
any size of green strut.

This is one face of the first stellation of the icosahedron, which consists of 
20 of these 6-gons, passing through each other. Its edges are arranged 
like those of the rhombic triacontahedron, but the green “rhombi” are 
not planar.

8. Make a complete model, building the green portion of this structure,
omitting the blue. Use any size of green strut.

Stellated Polyhedra (continued)22.1
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Challenge
Invent a stellation for a polyhedron of your choice.

Given a polyhedron, imagine one of its face planes extended. Imagine the
lines that are created when that one face plane is intersected by all the
other face planes of the polyhedron.The faces of the stellation must be a
shape outlined by some of those lines.You will now build three stellations
of the rhombic dodecahedron.

1. Make a rhombic dodecahedron. (It consists of 12 fat yellow rhombi.)

2. Imagine a rhombic pyramid formed by using two blues and two
yellows to connect the four vertices of one face to the polyhedron’s
center. Create the first stellation of the rhombic dodecahedron by
erecting this rhombic pyramid on the outside of each of the 12 faces.
Each of the exterior faces of this nonconvex form is a continuation 
of one of the original rhombic dodecahedron’s planes.

3. You can add more of these rhombic pyramids to make a second
stellation. (Hint: Use the blue struts from the first stellation so that
only yellow struts are needed, two for a pyramid base and one for the
remaining edge.)

Q1 How many additional rhombic pyramids are needed at this stage? 

4. You can add yet more of these rhombic pyramids to make a third
stellation. (Hints: Use one existing blue strut and one new blue strut
for each pyramid.The new ones are not along the four-fold axes.)

Q2 How many additional rhombic pyramids are needed at this stage?

There are millions of stellations of the rhombic triacontahedron.You will
build two of them—one yellow and one blue.

5. Start with an r1 rhombus. Build a thin y3 rhombus in the same 
plane, such that each of its obtuse vertices is an acute vertex of the 
red rhombus.

6. Stellate an r1 rhombic triacontahedron by building such yellow
rhombi around each of its faces.The yellow rhombi will intersect
each other, so you need to build their sides as y1 + y2 so that the y1s
share their vertex with the r1s.

Q3 Verify that all the conditions for stellations are met by this model
and that the final construction is a polyhedron, with two faces
meeting at each edge.

More Stellations22.2
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7. Make an r2 rhombus and a b2 + b1 + b2 square. Place the rhombus
inside the square and connect its acute vertices to the square’s vertices
with y3s. If you have trouble, rotate the square 90 degrees so that the
zomeballs are parallel.

8. Stellate an r2 rhombic triacontahedron by building such squares
around each of its faces.

Q4 Notice the pentagrams and count the cubes in the finished
structure.

More Stellations (continued)22.2
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A. Cube and Tetrahedron Stellations Explain why there are no
stellations of the cube or tetrahedron.

B. Stellating the Dodecahedron The great dodecahedron, the small
stellated dodecahedron, and the great stellated dodecahedron (see
Unit 20) are all stellations of the dodecahedron. Explain why. Build
all three simultaneously around one core dodecahedron.

C. Stellated Cuboctahedron and Icosidodecahedron Construct a
cuboctahedron and erect low square or triangular pyramids on each
of its faces. Choose the height of each pyramid such that each new
triangular face continues the plane of the adjacent cuboctahedron
face.What is the result? Repeat, starting with an icosidodecahedron.

D. A Red Rhombic Triacontahedron Stellation Stellate an r1 rhombic
triacontahedron by building a concentric and parallel r2 + r1 + r2

rhombus around each of its faces. Use b2s as scaffolding to connect
the obtuse vertices of each r1 rhombus to the parallel r2 + r1 + r2

rhombus.Verify that all the conditions for stellations are met by this
model and that the final construction is a polyhedron.

E. Another Stellation The pointy ends of 20 acute red rhombohedra
can be assembled around a point to form a starlike polyhedron. Just
start with a red starburst and complete each group of three struts into
a rhombohedron.The rhombohedra meet face-to-face, leaving only
half the rhombi visible for the exterior faces. Keeping only the
exterior structure gives a structure of 60 rhombi that is a stellation of
what polyhedron? (Notice it has zones, like a zonohedron.)

F. Five Tetrahedra The compound of five tetrahedra (see Unit 11) is
another one of the stellations of the icosahedron. Rebuild that model
and see it in this new light.

G. Five Octahedra Dual to the compound of five cubes in a
dodecahedron is the compound of five octahedra around an
icosahedron. Recall that in Unit 11 one octahedron was constructed
around an icosahedron and that the octahedron’s faces were seen to
lie in the face planes of the icosahedron.The five octahedra
together form a stellation of the icosahedron.The three edge
lengths required can be shown to be in the ratio 2τ, τ2, and 
1 + τ2.With strut lengths g1 and g2, these are formed as 2g2, g1 + g2,
and 2g1 + g2, so a large supply of greens is necessary to complete
this model. Start by making the first stellation of the icosahedron,
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but in edge length 2g2.Above each of the nonplanar “rhombic”
openings, erect a pyramid that is one corner of an octahedron. Use
the g1 + g2 lengths above the short diagonal and the 2g1 + g2

lengths above the long diagonal.They meet at 60- and 90-degree
angles, as in the octahedron. How do five octahedra, with eight
faces each, combine to give only 20 face planes?

H. Compound of Three Cubes In M. C. Escher’s picture Waterfall, one
tower is topped with the first stellation of the rhombic dodecahedron
and the other is topped with a compound of three cubes shown
below.To understand the compound of three cubes, imagine three
identical cubes superimposed and imagine the 3 four-fold axes that
they all share. Imagine gluing each cube to one of the four-fold axes.
Now turn each cube 45 degrees about its axis.The result has all the
symmetry of a cube.To make a Zome model, recall that in the blue
plane, a green square is rotated 45 degrees from a blue square. So
each cube has two green faces,
connected with four blue edges.An
edge length of g1 + g2 + g1 allows
for the crossings at approximately
the regular 8-gon points. However,
the blue edges then require struts of
length �g1 + g

2
2 + g1� and there is no

blue edge of that length. But b3 is a
very close approximation, and this
makes a beautiful model, in which
the distortion is imperceptible.
How close is the approximation to
the cube?
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Students start with flat fractals, are introduced to the idea of 
fractal dimension, then move on to fractal models that exist in 
three-dimensional space.

Goals
To look at finite approximations of fractals

To develop a deeper understanding of dimensions

Prerequisites
To complete the whole unit, students need to understand scaling area and
volume (Units 15 and 17) and logarithms.

Notes
The models in Activities 23.2 and 23.3 are fascinating and well worth
building.They should generate much discussion about infinity.

If your students do not understand logarithms, you need not skip this whole
unit.You might skip Activity 23.1 and the questions on fractal dimension in
the subsequent activities. Or you might have students find the fractal
dimension with a graphing calculator or graphing software, without referring
to logs. For example, to answer Question 3 in Activity 23.1, they can graph 
y = 3x and y = 4 and look for their intersection.The value of x at the
intersection is the solution to the equation. Or they could get a good
approximation to the solution by iterative guess-and-check.

Even though some examples of fractal figures were studied in the nineteenth
century, fractal geometry took off with the advent of the computer.You
might complement this unit with work on the computer, using specialized
software or a computer language that supports graphics.
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Challenge
Build a model of a pentagram inscribed in a larger pentagram. Can the
pattern be continued? 

Fractals are objects with scaling symmetry. Symmetrical polygons and
polyhedra appear unchanged when rotated or reflected. Fractals have the
property of appearing unchanged when looked at with a magnifying glass.
A small portion of a fractal, when enlarged, looks like the whole thing.

No physical object is a true fractal, because if one magnifies it sufficiently,
one sees atoms, which have their own structure. So a model of a fractal can
only have scaling symmetry over a finite range of magnifications. One must
imagine the finer detail, just as with other types of geometric models one
must imagine, for example, that points are infinitely small, lines are
infinitely long, and planes are exactly flat.

1. Make Stages 0, 1, and 2 of the Koch curve using b1s.All angles are 60
or 120 degrees. Notice that Stage 2 is made of four copies of Stage 1.
(If you make four separate Zome parts and put them together, you may
have to turn some over.) 

Stages 0, 1, and 2 of the Koch curve

Stage 1 is also called a generator. Stage 2 can be thought of as resulting from
Stage 1 using a transformation rule: Each of the four edges in Stage 1 is
replaced with a copy of the generator. For Stage 3, take each edge in 
Stage 2 and replace it with the generator.This is most easily accomplished
by making four copies of Stage 2 and assembling them together.

2. Make the fourth stage of the 
Koch curve.

Q1 How many struts are used in the
kth stage? 

Three copies of the fourth stage put
together make a nice snowflake shape with
six-fold symmetry.

Stage 0 Stage 1 Stage 2

Introduction to Fractals23.1
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In these Zome models, the overall size increases at each stage. If you had
shorter struts, you would use them instead at each stage to keep the
overall scale factor for length unchanged.

Q2 For the end-to-end length to remain unchanged in going from
Stage k to Stage k + 1, the struts used at Stage k + 1 would be
what fraction of the length of the struts at Stage k?

If you could continue this indefinitely, the result would be a fractal with
infinitely many little wiggles.

The wiggles make the curve appear thicker than ordinary curves such 
as lines or arcs. But it is not so thick as to fill an area.There is a sense 
in which the Koch curve is more than one-dimensional yet less than
two-dimensional.You can quantify this with the idea of a fractal dimension.

Recall how area scales as the second power of length and how volume
scales as the third power of length. If you have a two-dimensional 
object and scale its length by 3, the area scales by 9. If you have a 
three-dimensional object and scale its length by 3, the volume scales 
by 27.You can write the formula qr = s, where q is the scaling factor for
length, r is the dimension, and s is the scaling factor for the content of 
the object.

In the Koch curve, the number of struts is scaled by 4 every time the
length is scaled by 3. For area and volume, the dimension—2 or 3—is the
power that 3 is raised to, to get 9 or 27. For the number of struts, the
fractal dimension is the power 3 is raised to, to get 4.

Q3 Three to what power is four? Solve 3x = 4 for x.

This curve has a fractal dimension that is between that of a line (1) and
an area (2).A bumpier generator should result in a fractal with a higher
fractal dimension.

3. Starting with a line segment as Stage 0 and
this 8-strut generator as Stage 1, make its
Stage 2.

Q4 What is the fractal dimension of 
the result? 

Introduction to Fractals (continued)23.1
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Challenge 
Draw or build a large capital Y. Then replace each of its upper two
branches with smaller Ys. Continue this process several levels deep.

Our next Zome fractal will be a yellow tree with three-way branches.
Many natural objects, not just trees, have a structure similar to that of our
fractal tree: river systems, circulatory systems, and so on.

1. Hold a zomeball and pick a yellow (triangular) hole as an axis, but
don’t put anything in it. Put three y1s in the three closest yellow
holes. Put a y2 in the opposite yellow hole. If you hold it by the y2

with the y1s pointing upward, this is like a tree with three branches.
Call it a first-level tree.

2. Make two more of these first-level trees.Assemble all three as
branches into one zomeball (in three yellow holes nearest one chosen
yellow hole) and add a y3 trunk (in the hole opposite the chosen
hole). If you hold it by the y3 with the y1s pointing upward, this is a
second-level tree, with three main branches that each have three
smaller branches.

3. Make two more of these second-level trees.Assemble all three as
branches into one zomeball and add a y3 trunk to make a third-level
tree. (The trunk ought to be y4, but if that is too unstable to stand up,
a y3 will do.)

The third-level tree has 27 y1s as its leaves. If you are careful, you can
make a stand for it (put three r1s into a ball to make a tripod) and have it
stand vertically.

4. Try one of these variations:

a. Make it a four-way branching structure by also including a 
y1 in the chosen center hole in the first-level trees.Then also
include a first-level tree in the center hole of the second-level
trees, and so on.

b. Choose a different branching angle in a yellow tree. Instead of
the three holes closest to the chosen axis, use three (or six) near
its equator.

c. Make a five-way red tree with five r1s and an r2. In the third-level
structure, some of the r1 struts will get in each other’s way, but
just let them cross past each other.

Sierpiński in Three Dimensions23.2
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d. Make a five-way blue tree.The trunks, being blue and not 
red, will not be along five-fold axes. Start with five b1s in the 
five blue holes adjacent to a chosen red hole, and put the 
b2 opposite one of the b1s.The second-level tree has the form of
a pentagonal pyramid.At the third level, some of the first-level
balls want to be at the same position, so remove the duplicates so
that the tree connects together with itself.

5. Try extending one of the above trees to the fourth level. First plan,
by determining how many pieces are needed and seeing if you have
enough. For structural reasons, the tree may have to rest on its
branches and leaves rather than its trunk.

In 1915 the Polish mathematician Waclaw
Sierpiński (1882–1969) described a triangular
fractal structure that has a tetrahedral analog.
Sierpiński’s gasket can be obtained by removing
the middle fourth of a triangle that has been
divided into four smaller similar triangles, then
repeating this operation on the three remaining
portions, and so on.

6. Make a double-scale tetrahedron. (You can use a green regular
tetrahedron or the red/blue approximation. However, if you choose 
a tetrahedron involving several types of struts, your Zome kit will 
go further.)

7. Connect the midpoints of the edges to divide the tetrahedron into 
an octahedron and four smaller tetrahedra.

You have to imagine that the tetrahedra are solid but the octahedron 
is hollow.

8. Assemble four such units into a quadruple-scale tetrahedron.

If you have time and enough pieces, you can assemble four of these into a
larger tetrahedron. If you imagine keeping the overall size constant, and
removing the central octahedron from ever smaller tetrahedra, you can see
that at the limit, we obtain a structure that is mostly holes, so it shouldn’t
be surprising that the tetrahedron has dimension less than 3.

Q1 What is the fractal dimension of the structure? 
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Challenge
This fractal, at the limit, fills an entire square. Describe how to go from one level
to the next.

Hilbert curve 

1. Remove four edges of a b1 cube so that what remains is a cycle of struts 
that visits all eight vertices, called a Hamiltonian cycle after the Irish
mathematician Sir William Rowan Hamilton (1805–1865).Then remove
one more edge for a Hamiltonian path in which every vertex is visited once.
There is a right angle at every turn.This is a 2 × 2 × 2 structure of
connected vertices.

The following steps will explain how to expand this into a 4 × 4 × 4 structure
in which every vertex is visited once and there is a right angle at each turn. In
order to explain how each 2 × 2 × 2 component is rotated, describe the three
coordinate directions as L/R (left/right), U/D (up/down), and N/F (near/far).
(To keep the structure stable, you may insert some temporary support struts to
be removed at the end. Mark them, perhaps with a piece of tape, so that you
remember which they are, or use g1s diagonally.)

2. Rotate your 2 × 2 × 2 structure so that the path can be understood 
as starting at the near left lower vertex and moving in the directions 
U-F-D-R-U-N-D to end at the near right lower vertex.

Keep this structure in front of you as a guide: It will be the overall path in the
larger structure you will build in Exercises 3–5.

3. In a separate structure, start a path that goes R-F-L-U-R-N-L — U — R-
U-L-F-R-D-L.The middle U is a strut connecting two rotated copies of
the 2 × 2 × 2 component, one above the other, into a 2 × 2 × 4
component.

4. At the end of the path, place a strut that goes in the Far direction.Then
continue the path through the next two blocks of vertices as R-U-L-F-R-
D-L — D — N-D-F-R-N-U-F. This gives a path in a 2 × 4 × 4 block of
vertices. (It will sag until it gets down to the ground again, for support.)

More Three-Dimensional Fractals23.3
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5. At the end of the path, place a strut that goes in the R direction. Imagine a
mirror plane perpendicular to this new strut and bisecting it. Double it into
a cube by building the mirror image in this plane, making a 4 × 4 × 4 path.

Notice there are eight 2 × 2 × 2 components all together and seven struts that
connect them.The seven struts are analogous to the three darkened struts in the
images of the Hilbert curve.They copy the directions U-F-D-R-U-N-D of the
previous stage of the fractal, as oriented in Exercise 2. Remove any struts used
for support.

Q1 How might this idea be extended indefinitely to fill a region of any
size? (If you were to extend this, there would come a point [soon]
when a joint would not support all the weight above it.)

If we were able to keep the overall size of the cube constant and keep shrinking
the struts, how much of the space inside the cube would be taken up by the
path? One way to think about this is to calculate the fractal dimension of 
the figure.

Q2 How many edges are in a section of the structure with p × q × r
vertices? (Include half of the strut where the blue path enters this
rectangular block of space and half of the strut where the path exits.)

Q3 When you are doubling in linear dimension (from 2 × 2 × 2 to 
4 × 4 × 4), the number of struts required is multiplied by what? 

Q4 What is the fractal dimension of the structure?

The Zome components are geometric forms.They can be modeled, on a 
larger scale, with Zome structures! You will build the ingredients for such
“mega-Zome” fractal structures.

6. As a model of a zomeball, build a polyhedron like the
rhombicosidodecahedron (3, 4, 5, 4) but with b1 pentagons and 
b2 triangles. Instead of squares, it will have golden rectangles.
We call that a megaball.

7. As a model of a blue strut, make a b1 × b2 × 2b3 prism.Think of that as a
mega-b1 strut.

8. Connect the megastrut to the megaball.

9. Make a red megastrut by stacking a b1 pentagonal prism with r3 vertical
edges, a b1 pentagonal antiprism with b1 zigzag, and another b1 pentagonal
prism with r3 vertical edges.

10. Design and build a yellow megastrut.

With enough pieces, you might make a mega-icosahedron.
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A. Fractal Pentagram A pentagram consists of five branches (72-degree–
72-degree–36-degree triangles) arranged around a central regular
pentagon.This would be a Stage 1 structure. Build five pentagrams,
arranged around a central regular pentagon.Two sides of any pentagram
correspond to two sides of a “golden triangle” arm in the next larger
pentagram.This would be a Stage 2 structure.This process can be
continued indefinitely, with each branch in each subpentagram being
replaced by a pentagram.

B. Snowflake Perimeter and Area What is the total perimeter and area of
a Koch curve-bounded snowflake at stage n, as n approaches infinity?
(Assume the initial triangle has side 1.)

C. A Koch Variation Make a Koch-like curve using half a regular hexagon
as generator and Stage 1.When you go to Stage 2, insert the generator
first on the inside, then on the outside,
then on the inside (as opposed to the
Koch curve, where the generator was on
the same side in all four substitutions).
What is the result, what is its dimension,
and how does it relate to the Sierpiński gasket?

D. Fractal Stella Octangula Start with a quadruple-scale tetrahedron
(regular green, or red-blue approximation). Connect the midpoints of its
edges to divide each face into fourths. Build four triangular pyramids
with the central triangles of each face as bases.You should have a stella
octangula. Now repeat the process on each triangular face. Continuing
this process indefinitely creates an extremely bumpy surface.

E. Recursive Polyhedra Consider any regular polyhedron, but in the place
of each of its faces (or edges or vertices) position a smaller copy of the
same polyhedron. Make the smaller copies parallel and just large enough
to touch their neighbors. For example, replacing each face of a cube
with a smaller cube gives a cluster of six cubes around a hollow cubical
center, touching along shared edges. Replacing each edge of a cube with
a smaller cube gives a cluster of 12 cubes, arranged like alternate cells of
a 3 × 3 × 3 “Rubik’s cube,” touching at shared vertices. Given enough
material, copies of these clusters can be used as units in larger clusters.
The simplest example is the Sierpiński tetrahedron in Activity 23.2 that
is just a tetrahedron in which each vertex is replaced with a smaller
tetrahedron.What do you get if each edge of a dodecahedron is replaced
with a smaller dodecahedron? What if each edge of an icosahedron is
replaced with a smaller icosahedron?
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This unit develops the proofs of Euler’s theorem and Descartes’ theorem.
For the first theorem, the topological concept of a tree is explored. For 
the second, special properties of triangulated polyhedra are used.

Goals 
To prove Euler’s theorem

To prove Descartes’ theorem

Prerequisites
Students must remember and understand Euler’s theorem (Unit 6) and
Descartes’ theorem (Unit 10) and have experience with duality (Unit 9).

Notes
When these theorems were introduced earlier in this book, students were
guided to discover them by looking at specific examples and generalizing.
Of course, that did not constitute a proof.

In this unit, we use the Zome System to help visualize several of the key
concepts from topology that go into the proof. Still, at this level, we are not
able to give a completely rigorous proof, and we omit certain aspects of the
full proof. Specifically, the proof depends on a theorem developed by the
French mathematician Camille Jordan (1838–1922).The Jordan curve
theorem states that every simple closed curve on a plane surface or a sphere
divides the surface into two disconnected regions (an inside and an outside if
the surface is a plane). Notice that this does not hold, for example, for loops
that go around the hole of a donut.Another part of the argument that is
overlooked in the text is made explicit in the answers to Questions 4 and 5
in Activity 24.1.

Questions 1 and 2 in Activity 24.2 review material that was seen in 
Activities 4.1 and 6.2.
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Challenge
Hold the 12 vertices of an icosahedron in place, using as few struts 
as possible.

A tree is any single (connected) Zome structure with n struts and n + 1
balls. By single structure, we mean that everything connects somehow, so
there are no loose pieces. Colors, lengths, and angles do not matter. Only
the number of components is important in the definition.

1. Make some trees.

There are many shapes for trees. Some are like snakes with a ball at the
head and tail. Some are like a starburst, having a central node with struts
radiating out from it and a ball at the end of each strut. Some actually
look like trees (with a ball at the end of each branch and root); that is
why mathematicians use the word tree for this idea.

Q1 Describe the trees for which n = 0, for n = 1, and for n = 2.

In each of those cases, the trees are topologically identical. In other words,
they are identical from the point of view of the numbers of balls and
struts and of how those balls and struts are connected with each other.

Q2 Find all topologically distinct trees for n = 3 and for n = 4.

Q3 Is a polygon a tree? Explain.

A loop contains a strut, connected to a ball, connected to a strut,
connected to a ball, and so on until the path is back to where it started.
Any polygon is a loop.

Q4 Can you make a tree that contains a loop? 

Q5 Can you make a tree that has a strut’s end hanging free without
a ball on it?

It can be proved that for a connected structure, the absence of loops and
the presence of a ball at the end of each strut is equivalent to the
definition of a tree.

Q6 If we took an icosahedron and removed edges from it so that
what remains is a tree, how many struts would be left? (You
have already done this for the Challenge. If you did not get a
tree, you probably can remove more edges!)

Q7 If we took a dodecahedron and removed edges from it so that
what remains is a tree, how many struts would be left? You
don’t need to build it to find the answer.

Proof of Euler’s Theorem24.1
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Now you will make a model of two interdigitating trees, one in the
icosahedron and one in its dual dodecahedron. (Interdigitating means
“fingers going through each other” like when you clasp your hands
together.) First, recall the compound of the icosahedron and
dodecahedron, which illustrated duality. Each edge of one crosses an 
edge of the other.There are 30 crossing points where an edge of one
polyhedron crosses an edge of the other. Select either one edge or the
other at each crossing, keeping one and removing one.The way to do it is
to select a tree from the icosahedron’s edges, as you did in the Challenge.
If an icosahedron edge was removed to make the tree, then you still have
the dodecahedron edge at that crossing point. But if the icosahedron edge
is part of the tree, you will keep it, so you remove the dodecahedron edge
it crosses.

2. To make a model of this, create a starburst of 12 r2s and 20 y2s in a
central zomeball, which will act as scaffolding to hold it all together.
Put zomeballs at the ends of all the red and yellow struts. Create any
tree using icosahedron edges by inserting 11 b2s into balls on the ends
of red struts. (Either copy your tree from earlier or create a different
tree.) Look to be sure there are no loops. Now, at the remaining 
19 crossing points, place a b1 between balls on the ends of yellow
struts. No two blue struts should cross.

Q8 Do the dodecahedron struts form a tree?

But how do you know this always works, no matter what tree you choose
in the icosahedron? The reason the dodecahedron edges cannot have any
loops is that a loop would cut off an island of remaining icosahedron parts
(inside the loop and outside the loop), and you chose the icosahedron
parts to form a tree; so they have no islands.The reason the dodecahedron
parts are not disconnected into any islands is that disconnection would
happen only if there were a loop in the icosahedron parts, and you chose
the icosahedron parts to form a tree; so they have no loops.

Summarizing, the effect of this construction is to find two trees
simultaneously: one in the icosahedron and one in its dual, the
dodecahedron. No vertices were removed, and the total number of struts
in the two trees together equals 30, the number of original edges in the
two polyhedra. From this to Euler’s theorem is just addition.

Let VI be the number of icosahedron vertices, and let EI be the number
of edges in the icosahedron tree. Because it is a tree, VI = EI + 1.
Let VD be the number of dodecahedron vertices, and let ED be the
number of edges in the dodecahedron tree. Because it is a tree,

Proof of Euler’s Theorem (continued)24.1
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VD = ED + 1. Summing the two equations, VI + VD = EI + ED + 2.
Now the number of dodecahedron vertices, VD, is the same as the
number of icosahedron faces, F. (This is a key aspect of duality. In the
model, you’ll see there is a dodecahedron vertex in the middle of each
icosahedron face, establishing the one-to-one relationship.) On the right
side of the equation, you can replace EI + ED with E, the number of
icosahedron edges.These substitutions give V + F = E + 2, which is
what you wanted to show.

Although our model uses the icosahedron and the dodecahedron, the
same proof works in general by creating interdigitating trees in any
polyhedron and its dual.

Q9 Use a Schlegel diagram of another polyhedron to work through
this proof again. Inside each face of the polyhedron, use a
different color of dot to represent the vertex of the dual
polyhedron (not forgetting that the outside region is a face!).
Now use a thicker pen to make a tree connecting the original
vertices by following some of the original edges. Finally, make
an interdigitating tree connecting the colored dots.Verify that
the total number of edges in the two trees equals the number of
edges in the original polyhedron, and that all faces and vertices
are accounted for. Explain how Euler’s formula follows.

For this argument to be valid, it is necessary for the polyhedron to have
a dual.As you can see on its Schlegel diagram, any simply connected
polyhedron does indeed have a dual.The argument fails if the
polyhedron has a hole (as in a torus—a donut shape), because after
making the first tree in the construction the second structure is not a
tree, because it has a loop.

Proof of Euler’s Theorem (continued)24.1
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Challenge
Prove that for polyhedra whose faces are all triangles, Descartes’ theorem
follows from Euler’s theorem. (Hint: Sum all the angles of the
polyhedron’s faces in two different ways—one based on faces and one
based on vertices—and make an equation of the two sums.Then do some
algebra involving your equation and Euler’s formula to show that the sum
of the angular deficits for the polyhedron is 720 degrees.)

Descartes’ theorem can be proven from Euler’s theorem.The following
questions will help you do this for polyhedra whose faces are all triangles.

Q1 For polyhedra composed only of triangles, derive a simple
relationship between E and F. What is it? 

Q2 How many vertices are in an all-triangle polyhedron with 
F faces? (You can substitute to eliminate E from Euler’s theorem.) 

Q3 What do you get if you add all the angles of all the faces of an
all-triangle polyhedron assuming F faces?

Q4 What do you get if you add all the angles at each vertex,
assuming V vertices and a total deficit of D?

Q5 Combine the results of Questions 3 and 4 into an equation.

Q6 Solve the system of equations from Questions 2 and 5 for D.

The following paragraph explains how to generalize this result to all
polyhedra.

Start with any simply connected polyhedron, which now may have some
pentagonal faces, for example. Drawing two diagonals in a pentagon face
results in a new polyhedron with three triangles replacing that pentagon.
Of course, Euler’s theorem still holds, since it holds for any simply
connected polyhedron. (Drawing a face’s diagonal just adds one to both 
E and F, maintaining the equality.) Generally, starting with any
polyhedron, draw as many diagonals as are needed to triangulate it fully.
This means that every one of its faces is a triangle.This does not change
the sum of the angles at any vertex because the diagonals just chop the
face angles into smaller pieces that still add up to the same total. Since the
face totals are unchanged by triangulation, the individual angle deficits are
unchanged and the total angular deficit is unchanged. Because the
triangulated polyhedron has an angular deficit equal to 720 degrees, the
original polyhedron, whatever its faces, must have started with a total
angular deficit of 720 degrees.

Proof of Descartes’ Theorem24.2
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A. Another Model Make a model of interdigitating trees for some other
polyhedron and its dual. (The rhombic triacontahedron and
icosidodecahedron are one nice possibility.The cuboctahedron and
rhombic dodecahedron are another.) Review the proof of Euler’s
theorem on that model.

B. Descartes’ Donut Euler’s theorem and our proof of it assume that
the polyhedra are simply connected. If we make a polyhedron that
looks something like a polyhedral torus—that is, with a hole through
it—then the theorem doesn’t hold. In Unit 10, you found that 
V + F ≠ E + 2; in fact, V + F = E for this kind of polyhedron.
Using that as the starting point in a proof like the above, what will
the total angular deficit of a polyhedral torus be?

C. Fancy Donuts Build a polyhedral torus with five-fold symmetry for
it and its hole.

D. Two-Hole Tori What happens to the two theorems in the case of a
two-hole torus?

Explorations 24
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This is a collection of explorations that did not fit in the other units.

Goal
To give advanced students a chance to explore further

Prerequisites
This unit is aimed at students who have covered most of the material in this
book. Specific prerequisites vary from exploration to exploration.

Notes
For further activities with orthoschemes (Exploration T), there is a
commercially available cardboard and Velcro kit for making the cube’s
orthoschemes and assembling them: Exploring Math with Root Blocks, by
Matthew A. Solit et al.

U
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A. Largest n-gon What is the largest number of sides possible on a
convex planar Zome polygon 

a. without green struts?

b. including green struts?

B. Equilateral Pyramids An equilateral pyramid has all edges the same
length.As a consequence, it has equilateral triangles for its triangular
faces.What equilateral pyramids are possible in general? Can they all
be built with Zome components? What about equilateral prisms and
antiprisms?

C. Antiprisms with Green The antiprisms you worked with in Unit 1
involved no green struts.What antiprisms can you make that have
green bases or zigzags?

D. Knots With six balls and six struts, make a loop that is tied in a
simple overhand knot. Find several ways to do this.

E. Zome Triangles To make a triangle, you need three different
directions in a common plane. Make a display of every possible Zome
triangle that can be made without green struts.The display should
not contain any similar triangles.

F. Wheels Although the Zome System does not allow construction 
of a regular 20-gon, it does allow a good approximation of a prism
on a regular 20-sided base.The 20 dihedral angles around the
circumference are equal, so this makes a nice 20-sided wheel that 
rolls fairly smoothly along the floor.Try to discover it. (Hint:The 
two 20-gon “bases” are not quite planar 20-gons made of ten b1s and 
ten y1s alternating, almost in the red plane.After you discover it, try 
to find an analogous 12-sided wheel with 12 equal dihedral angles.)

G. Nested Platonic Solids Johannes Kepler tried for years to make a
model of the nested Platonic solids to explain the distances between
the planetary orbits. He eventually discarded the idea. Make a Zome
model of the five Platonic solids such that each except the outermost
has all of its vertices on the vertices or edges of the next larger
enclosing polyhedron.There is only one such nesting sequence.
(It’s not Kepler’s.) What is it?

H. Chiral Hexecontahedron Using a b2 decagon to find the center of 
a b1 + b2 + b1 pentagon in the Challenge of Activity 17.2 leads to a
way to dissect a regular pentagon into five congruent trapezoids.The
result is chiral, with five-fold rotational symmetry but not mirror
symmetry. Dissect an equilateral triangle into three congruent
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trapezoids in a chiral manner.A dodecahedron whose 12 faces are
composed of these five-fold constructions (all of the same
handedness), and an icosahedron whose 20 faces are composed 
of these three-fold constructions, are geometrically very distinct.
However, they have the same symmetry—all the rotational axes of
icosahedral symmetry, but no mirror symmetry—and so are chiral.
Their structures of vertices and edges are topologically identical. Each
consists of 60 pentagons (which happen to be distorted geometrically
into trapezoids), 12 five-way vertices, and 80 three-way vertices.
Explain why they have the same connectivity, meaning that if the
struts were rubber, you could stretch either structure into the shape
of the other.

I. Elevated Polyhedra To elevate is to build a pyramid on each face of a
given polyhedron. Depending on the height of the pyramids, the
faces or edges may or may not continue the lines or planes of other
parts of the structure. If you elevate the cube or octahedron to just
the right height, pairs of triangles merge into rhombi, giving the
rhombic dodecahedron. If you start with other polyhedra elevated to
a height so that two triangles merge into faces, what polyhedra can
you make? Here are two to try:

a. the regular tetrahedron 

b. a truncated icosahedron in which the pentagons have edge b2 but
the other 30 edges are of length b1 (the hexagons are uniform)

J. Concentric Solids For each polyhedron below, find a way to build a
model that would consist of two copies of it at different scales,
connected in such a way as to be concentric.

a. cube

b. regular dodecahedron

c. regular icosahedron

d. rhombic dodecahedron

e. rhombic triacontahedron

K. Constructions in Rhombic Polyhedra In a double-size zonohedron,
there are vertices at the edge midpoints, which can be connected. In
particular, in the case of rhombic polyhedra, this can lead to
interesting structures.Try these two in the double-size rhombic
triacontahedron:

a. Inscribe a rectangle in each rhombus by connecting consecutive
midpoints. Remove the red struts.What’s left?

Explorations 25 (continued)
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b. Connect the four edge midpoints with a new ball at each face
center. Remove the original edges.We call what’s left a “skewball.”
How would you describe it?

c. Repeat (a) and (b) with other zonohedra, especially rhombic
polyhedra.You should end up with interesting polygons and
skewballs.

L. Cube-Symmetry Construction Set Design a construction system like
the Zome System but based on the rotational symmetries of the cube
(four-fold, three-fold, and two-fold axes).What does the ball look like?
The Zome System has twists in the five-fold and three-fold struts but
not in the two-fold.Are there twists at the center of your three types 
of strut?

M. Green Holes If a next-generation zomeball contained a hole for each
possible green direction, how many holes would be in each ball? Design
a new ball in which green struts can each go straight out of their own
hole, rather than having to share a red hole.

N. Bubbles If you dip Zome structures into a pot of bubble solution, you
can create interesting bubble structures. (Use a solution of 1 part dish
detergent per 6 to 8 parts water.) Examine your bubbles and count how
many films meet at an edge.What is the dihedral angle where several
films meet? Dip and re-dip a Zome Platonic solid, trying to create a
smaller Platonic solid bubble within it.When you succeed with a cube,
you get a structure like the hypercube of Unit 21.The edges of the
bubble’s form will connect to the edges of the Zome form. For which
Platonic solids is this possible?

O. Flower Ball Any three noncoplanar struts in a ball can be extended with
three more of each type to make a parallelepiped.What happens if you
start with the red and yellow starburst together, make each group of
three adjacent struts (two reds and a yellow) into a parallelepiped, and
then keep just the exterior structure? 

P. Compound of 15 Golden Bricks Build a b3 icosidodecahedron 
(3, 5, 3, 5). Find eight of its vertices that are at the corners of a 
golden brick—that is, a 1 × τ × τ2 rectangular prism.The 30 vertices of
the icosidodecahedron contain 15 such golden bricks.You can make a
beautiful model showing the edges of all 15 golden bricks superimposed.

Explorations 25 (continued)

208 Unit 25 Further Explorations Zome Geometry
©2001 Key Curriculum Press



Q. Twelve-Hole Toroidal Polyhedron Build a polyhedron with 
12 openings that connect to a hollow center, with every face—inside
and out—a square or an equilateral triangle.

1. Construct a b1 dodecahedron.

2. Expand each face outward with an equilateral pentagonal
antiprism.These are the 12 passages to the hollow center.

3. Make each exterior pentagon the center of a decagonal saucer 
(five squares and five triangles surrounding the pentagon, as in
the rhombicosidodecahedron, but concave).The triangle edges
will meet over the edges of the original dodecahedron.

Verify that every face is a regular 3-gon or 4-gon. How many faces
are there? This is just one of many fascinating polyhedra described in
Bonnie Stewart’s Adventures Among the Toroids.

R. Sangaku Problem Sangaku was a traditional Japanese practice of
carving geometric problems into wooden tablets that were hung
under the roofs of religious buildings. One tablet, from 1798, poses
the problem of placing 30 identical small spheres around a large
central sphere so that every small sphere touches four small-sphere
neighbors and the central sphere. How can this be done, and what is
the ratio of the two sphere radii? (Hint: Find an appropriate
polyhedron and center the small spheres on its vertices.)

S. Inscribing and Circumscribing Among convex polyhedra, only 
the Platonic solids can be both inscribed in a sphere (vertices on 
the sphere) and circumscribed around it (faces tangent to the sphere
at their centers). Consider some of the Archimedean solids and 
their duals, and for each determine either why no sphere can pass
through all the vertices or why no sphere can pass through all the
face centers.

T. Orthoschemes An orthoscheme is a tetrahedron in which each face 
is a right triangle.A cube can be dissected into 48 congruent
orthoschemes that meet at its center. Can you build this
orthoscheme? There are two mirror-image forms—24 of each.
The other four Platonic solids can also be dissected into congruent
orthoschemes, although they cannot be built with the Zome System.
How many are there in each case? 

Explorations 25 (continued)
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U. How Many Axes Can There Be? We have seen examples of polyhedra
with no five-fold axes, with 6 five-fold axes (in the icosahedron and
dodecahedron), and with 1 five-fold axis (in a pyramid, prism, and
antiprism). Can there be a three-dimensional object with 2, 3, or 4 
five-fold axes? How about 0, 1, 2, 3, or 4 three-fold axes?

V. Halving Describe all the ways you cut each of the Platonic solids into
two congruent halves. (Hint: Mirror planes give solutions but not the
only solutions.)

W. Disphenoids A disphenoid is a tetrahedron with four congruent faces.A
disphenoid can be made in paper by starting with any acute-angled
triangle. Draw lines connecting its three edge midpoints to dissect it into
four smaller similar triangles. Fold on these lines and tape the edges,
making a tetrahedron.Why doesn’t this work with right or obtuse
triangles? What Zome disphenoids can you make?

X. k-Equivalence Sometimes two structures involve the same vertex
positions but are connected differently, such as a regular pentagon and
pentagram. Since vertices are points, which are zero-dimensional, the
pentagram and pentagon are 0-equivalent, meaning equivalent in their
zero-dimensional components.The icosahedron and the great
dodecahedron are 1-equivalent, because they have the same set of edges,
which are one-dimensional.This implies they are also 0-equivalent,
because the endpoints of the edges give the vertices.A cube is 
2-equivalent to the unbounded inside-out polyhedron formed by taking
all of three-dimensional space and removing a cubical hole; both are
objects with six square faces (two-dimensional components) as their
boundary.There are many examples of k-equivalence.

a. Name polyhedra that are k-equivalent to the small stellated
dodecahedron, for k = 0 and for k = 1.

b. Find two nonconvex uniform polyhedra that are 1-equivalent to the
rhombicuboctahedron (3, 4, 4, 4).

Y. Another Self-Intersecting Rhombic Triacontahedron Make a rhombus
with edges of length r4, each constructed as r2 + r1 + r2 in order to have
the proper points of intersection. Join three of these with their acute
vertices meeting, to make a three-fold vertex.Add rhombi at the other
acute vertices so that they are also three-fold. Continue until complete.
There will be 30 rhombi in all, and the obtuse vertices meet in groups
of five that go around twice.This is the dual of what nonconvex
uniform polyhedron?

Explorations 25 (continued)
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Z. Truncated 120-Cell Just as polyhedra can be truncated, so can 
higher-dimensional polytopes. Review the 120-cell of Activity 21.4.
Truncating it has the effect of replacing the dodecahedra with
truncated dodecahedra and creating a tetrahedron at each of the 
600 vertices.You can make a three-dimensional model of this 
four-dimensional uniform polytope. Everywhere that the 120-cell has
four dodecahedra surrounding a vertex, we will have four truncated
dodecahedra with a tetrahedron nestled among them.To begin, design
five progressively flattened shapes of truncated dodecahedra, analogous
to the five dodecahedra used in building the 120-cell. It is helpful to
build the original dodecahedra, in order to see the directions you will
need. Only b2s, r2s, y2s, and r1s are needed.The truncated dodecahedra 
fit together exactly like the cells of the 120-cell, and tetrahedra
automatically appear at the joints. Either start with the center and work
out (but then you can’t build the lower half ) or start at the bottom and
work up (using b3s vertically as structural buttresses on balls of that
height and as two vertical supports in the lowest, central, vertical 
10-gon). If you have enough material to make a sizable portion of 
this, it may be one of the most beautiful structures you ever see.
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Zome Geometry Unit 25 Further Explorations 211

©2001 Key Curriculum Press





1.1 Angles and Regular Polygons

1.

Zomeball with 10 radial blue rays

Q1 �
3
1
6
0
0

� = 36 degrees

2. Zomeball with 6 radial blue rays

Q2 �
36
6
0

� = 60 degrees

3. Zomeball with 4 radial blue rays (Red and yellow
struts could also be placed in that equator; they will
be discussed in Unit 13.)

Q3 �
36
4
0

� = 90 degrees

Q4 With an n-sided hole at the pole, there are 2n
radial blue rays, separated by �

3
2
6
n
0

� degrees.

Q5 Zomeballs have the angles to make regular 
3-, 4-, 5-, 6-, and 10-gons.

4. Regular 3-, 4-, 5-, 6-, and 10-gons

Q6 n-gon: 3 4 5 6 10

Pole hole: 3 rectangle 5 3 5

1.2 Prisms, Antiprisms, and Pyramids

1.

Zome pentagonal prism

2. Prisms as in 1, but with bases as 3-, 4-, 6-, and
10-gons

Q1 Cube

Q2 An n-gonal prism has 2n vertices, 3n edges, and
n + 2 faces.

3.

Zome pentagonal antiprism

4. Four more pentagonal antiprisms:

b2 pentagon with r1 struts for the zigzag 
(or b3 with r2)

b2 pentagon with b1 struts for the zigzag 
(or b3 with b2)

b1 pentagon with y1 struts for the zigzag 
(or b2 with y2, or b3 with y3)

b2 pentagon with y1 struts for the zigzag 
(or b3 with y2) (This one is very short.)

5. Five triangular antiprisms:

b1 triangles with r1 zigzag (or all 2s or all 3s)

b1 triangles with y1 zigzag (or all 2s or all 3s)

b1 triangles with b2 zigzag (or b2 with b3)

b2 triangles with b1 zigzag (or b3 with b2)

b2 triangles with r1 zigzag (or b3 with r2) 
(This one is very short.)

Q3 An n-gonal antiprism has 2n vertices, 4n edges,
and 2n + 2 faces.

6.

Zome square pyramid

Q4 There are five different right pyramids (a right
pyramid has the apex over the center of the base).
Three are constructed on one side of the base, two
on the other.There are also nonright pyramids.

yx

bx

Answers
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Q5 There are five different pentagonal right
pyramids.Again, three are constructed on one side
of the base, two on the other.

Q6 An n-gonal pyramid has n + 1 vertices,
2n edges, and n + 1 faces.

1.3 Zome System Components, Notation,
and Scaling

Q1 Opposite triangles are not parallel.They are
rotated 60 (or 180) degrees relative to each other.
Opposite pentagons are not parallel.They are rotated
36 (or 180) degrees relative to each other.

Q2 Red and yellow struts are composed of a prism,
an antiprism, and another prism, all in a stack.
Because of the antiprism, the polygons at opposite
ends of the strut do not have sides parallel.

Q3 The twist in the strut compensates for the twist
in the ball. If the red and yellow struts did not have
a twist, the balls they connect would not be parallel.
Blue struts do not need a twist.

1. The possibilities are listed in answers 3 and 4 of
Activity 1.2.

Q4 Regular 10-gon

2. 2b1 pentagonal antiprism with b1 10-gon halfway
between bases

3. 2b1 triangular antiprism with b1 6-gon halfway
between bases

Q5 Regular 2n-gon

Q6 Zomeballs have the angles to make only regular
3-, 4-, 5-, 6-, and 10-gons. So, the only values of n
for which both regular n-gons and regular 2n-gons
can be built are 3 and 5.

Explorations 1

A. There are twelve Zome red, yellow, and blue
skew polygons: five skew 10-gons that come from
the zigzags of the 5-gonal antiprisms, five skew 
6-gons from the triangular antiprisms, the skew 
6-gon of the cube, and one more yellow 6-gon.
(There are also skew polygons that can be made
with green.An exploration in Unit 14 shows how
to find them all.)

B. Start with any polygon base, add any strut in any
hole (other than the pole) of any ball, place an
identical parallel strut in each of the other balls, and
connect the top of the new struts to make a parallel
polygon.

C. An equiangular 2n-gon with every other side
twice the length of the others.

D. Blue rhombi can have a smaller angle of 36, 60,
72, or 90 and a supplementary larger angle.All seven
rhombi can be raised into pyramids.Try b2 for the
base. For the red and yellow rhombi and the square,
the apex of the pyramid can be directly above the
center. For the other three blue rhombic pyramids,
the apex will be off-center.All blue edges can be
used in each blue case, even for the square if you put
the apex outside the box. Students can continue to
explore.

E. It is a kind of concave pentagonal antiprism
consisting of two regular 5-gons and ten isosceles
triangles. It is indented along the b2 edges. Imagine
an ordinary antiprism with a rubber zigzag that was
given an extra large twist.We often assume polyhedra
are convex and ignore concave cases like this.

2.1 Building and Counting

Q1 The icosahedron has 20 faces, 30 edges, and 
12 vertices.

Q2 The icosahedron has 3 sides on each face and 
5 edges meeting at each vertex.

Q3 There are six antiprisms in an icosahedron. Hold
the icosahedron by any pair of opposite vertices;
there is an antiprism halfway between your hands.
The 12 vertices come in 6 pairs.

Q4 The dodecahedron has 12 faces, 30 edges, and 
20 vertices.

Q5 The dodecahedron has 5 sides on each face and
3 edges meeting at each vertex.

Q6 The same numbers appear, but with different
roles. Since the icosahedron has 3 sides on each of
20 faces and the dodecahedron has 5 sides on each
of 12 faces, each has 30 edges. For each vertex of
the dodecahedron, there is an icosahedron edge
and vice versa.This will be explored further in
Unit 9, Duality.
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2.2 Scaling
Challenge They are equal. See the answer to
Question 3.

Q1 Pentagon B is twice the size of pentagon A
in all corresponding lengths.A b1 pentagon has a 
b2 diagonal, so a 2b1 pentagon has a 2b2 diagonal.

Q2 2 : 1

3.

Zome concentric dodecahedra

4.

Zome scaled icosahedra

Q3 If you place the model on the table resting on a
face of the medium icosahedron, a face of the small
icosahedron will be at the top. Looking from the
side and imagining a ruler standing vertically, you
see that the distance between the opposite faces of
the medium icosahedron plus the distance between

Large

Small

Medium

Large

Small

Medium

opposite faces of the small icosahedron gives the
distance between opposite faces of the large
icosahedron. Similarly, resting it on a vertex or an
edge shows the other two relationships.

5. Again, small plus medium equals large.

Explorations 2

A. One strategy is to maintain five-fold symmetry,
using the ten blues as two regular pentagons, which
are the bases of a pentagonal antiprism with either a
red or a yellow skew 10-gon zigzag.The remaining
ten struts (yellow or red) are used to make each end
into a pentagonal pyramid.There are several variants
of this solution with different choices for the
lengths.

B. Five-fold symmetry is again natural. One nearly
flat dodecahedron has ten b2s used for regular
pentagons in the top and bottom face.An almost flat
y2 skew decagon is the zigzag equator, and r1s join
those components. It is essential to check that the
ten side pentagons (each b2-r1-y2-y2-r1) really are
planar. (They are.) Another variant is very tall with
b1 pentagons, an r2 skew 10-gon equator, and y3s
connecting.The ten side pentagons are each 
b1-y3-r2-r2-y3.

C. The elevated dodecahedron has 60 faces,
32 vertices, and 90 edges.

D. The concave equilateral deltahedron also has 
60 faces, 32 vertices, and 90 edges. It is topologically
equivalent to the elevated dodecahedron.

E.–F. The rhombic triacontahedron has 30 red
rhombic faces, 32 vertices, and 60 edges.

3.1 Green Polygons
Challenge The equilateral square pyramid is half of
the regular octahedron.

Q1 The single green struts in the six faces of the
cube form a regular hexagon.

Q2 Only the square and the octagon. Use b1 vertical
edges.
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3.2 The Regular Tetrahedron and
Octahedron

Q1 The regular octahedron is an equilateral
triangular antiprism.Any of its four pairs of opposite
sides can be considered the bases of the antiprism. It
is also a square dipyramid—two square pyramids joined
at their bases.

Q2 The edges of the regular octahedron form three
mutually perpendicular squares, each an “equator”
when two opposite vertices are considered poles.

Q3 A regular octahedron

7. In a double-scale tetrahedron, insert just one of
the three squares of the octahedron at its core.You
can rest the tetrahedron on an edge to make this
cross section horizontal.

3.3 Only Five Platonic Solids: A Proof
Challenge The pentagonal antiprism with
equilateral sides satisfies just the first and third
conditions. Gluing two pentagonal pyramids
together 5-gon to 5-gon would make a dipyramid
of ten equilateral triangles, which satisfies just 
the first and second conditions, but it is not 
Zome-constructible.You can make a tetrahedron 
in which each face is an isosceles triangle made of 
a b2 and two y2s; it satisfies just the second and 
third conditions.

Q1 See table at bottom of page.

Q2 In the icosahedron/dodecahedron pair, the entries
in the first two columns (5 and 3) switch places, as do
the entries in the next two columns (20 and 12), and
the entry in the last column is identical (30).The

cube and octahedron are pairs in exactly the same
way.The tetrahedron does not have another
polyhedron to pair with, but it pairs with itself.

Q3 Every polygon has at least three sides; two sides
cannot enclose any area.

Q4 Every vertex has at least three faces meeting;
two would not enclose any volume.

Q5 {3, 6} is flat because every vertex has 
360 degrees.

Q6 {3, 7}, {3, 8}, and so on, have more than 
360 degrees at each vertex.

Q7–Q9 {4, 4} and {6, 3} are flat. Everything else has
more than 360 degrees at each vertex.

Q10 All possibilities are accounted for in Questions
3–9.The five possibilities are the Platonic solids.

3.4 Truncation
Challenge The truncated cube consists of six 
8-gons and eight 3-gons.Truncating a 3b1 model
gives irregular octagons, so rebuild with gb struts.

Q1 A square

Q2 A hexagon

Q3 Truncated tetrahedron: four 6-gons, four 3-gons.
Truncated octahedron: six 4-gons, eight 6-gons.
Truncated cube: six 8-gons, eight 3-gons.Truncated
icosahedron: twenty 6-gons, twelve 5-gons.
Truncated dodecahedron: twelve 10-gons,
twenty 3-gons.

Q4 F + V

Q5 An octahedron
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tetrahedron

octahedron

cube

icosahedron

dodecahedron

Sides on 
each face

3

3

4

3

5

Faces

4

8

6

20

12

Faces at 
each vertex

3

4

3

5

3

Vertices

4

6

8

12

20

Edges

6

12

12

30

30

Polyhedron



Explorations 3

A. Like the cube, the octahedron has a regular 
6-gon cross section. Rest it on a face and imagine
slicing it horizontally through the center.The
icosahedron and the dodecahedron both have
regular 10-gon cross sections. Hold a five-fold axis
vertically and slice horizontally through the center.
The regular tetrahedron has a square cross section.
Rest it on an edge and imagine slicing it
horizontally through the center.

B. The 12 octahedron edges come in 6 opposite
pairs, each equal to and parallel to one of the
original tetrahedron’s 6 edges.

C. Choose four sides of the octahedron, no two
adjacent. Imagine the planes of those faces extending
off into space.The region they enclose is a large
tetrahedron, divided into five parts: four tetrahedra
surrounding the original octahedron core.
Mathematically the large tetrahedron exists, but 
lines where the planes intersect may not be 
Zome-constructible.

D. This will also work starting from any octahedron
that has opposite faces congruent.

E. The formula y(180 – �
36
x
0

�) gives the sum of the
interior angles when y x-gons meet at a vertex.This
must be less than 360 to make a convex polyhedron.
The plot is symmetric about the line x = y. The
paired polyhedra—icosahedron/dodecahedron,
cube/octahedron—are at mirror-image positions.
The tetrahedron is on this line, mirrored to itself.

F. These can all be built. Start with triple-scale
models for the truncated polyhedra or with double-
scale models for the ones truncated to the edge
midpoint.When truncating to the edge midpoints,
the octahedron and cube give the same result (the
cuboctahedron); the icosahedron and dodecahedron
also give the same result (the icosidodecahedron).

G. The cube, octahedron, and icosahedron contain
regular skew hexagons.Arrange one with a 
three-fold axis vertical and look around the
“equator” halfway up. (With the dodecahedron,
one finds six edges that can be extended to meet,
forming a regular skew hexagon.) The regular

octahedron contains four regular skew 6-gons—
the zigzags when you look at the octahedron as 
an antiprism in four different ways.There are 
three regular skew 4-gons in the regular
tetrahedron—the four edges that remain after
removing any two opposite edges.

4.1 Counting Strategies

Q1 Resting the icosahedron on a vertex, notice 
5 edges meeting at the top, 5 in a pentagon around
it, 10 in the zigzag, 5 in the lower pentagon, and 5
touching the table. 5 + 5 + 10 + 5 + 5 gives 
30 edges total.The 10 can be seen as 5 + 5 because
5 edges slope uphill and 5 slope downhill as you
walk around the icosahedron.

Q2 Resting the dodecahedron on a face, there are 
5 edges in the top pentagon, 5 radiating from it, 10
in the zigzag equator, 5 radiating from the bottom,
and 5 in the bottom face, making 30 total.

Q3 Four edges on the top face, four on the bottom
face, and four verticals total to 12.

Q4 Three edges touching the top vertex, three
touching the table, and six in the zigzag equator 
(a skew hexagon) total to 12.

Q5 The 20 faces of the icosahedron contribute 
3 edges each, making 60. However, each edge 
would be counted twice as it is part of 
two triangles. So, dividing 60 by 2 gives 30 edges.

Q6 The dodecahedron has 12 faces of 5 vertices
each. Multiplying 12 by 5 equals 60 gives each
vertex overcounted by a factor of 3, as it is part 
of 3 faces. Correcting for this, there are 60 divided
by 3 equals 20 vertices. Similarly, there are 

�
12

2
(5)
� = 30 edges.

Q7 The octahedron has �
8(
4
3)
� = 6 vertices and 

�
8(
2
3)
� = 12 edges.

Q8 A polyhedron with n faces of k sides each has

�
n(
2
k)
� edges. For the cube, �

6(
2
4)
� = 12 edges.

Q9 They must have counted wrong or not realized
that some face is not triangular, because by the
method of Question 8, the number of edges would
not be an integer.
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Q10 A polyhedron with n faces of k sides each, with
d faces meeting at each vertex, has �

n(
d
k)
� vertices. For

the cube, �
6(
3
4)
� = 8 vertices.

Q11 edges

Q12 �
v
2
d
� edges, because each edge touches two

vertices 

Explorations 4

A. The 60-sided concave equilateral deltahedron is
analogous (and its framework of edges is
topologically equivalent) to the elevated
dodecahedron described in the problem. For the
rhombic triacontahedron, the fact that there are
thirty 4-sided faces implies that there are 60 edges,
by the formula of Question 8.

B. This is not possible.There must be an even
number of faces with an odd number of sides.
Let a, b, c, . . . , n be a list in any order of the 
number of sides on each face; for example, for a
cube it is 4, 4, 4, 4, 4, 4.Then the number of 
edges is .The numerator must 

be even; otherwise, the number of edges would 
not be an integer. So the number of odd 
numbers summed must be even. Question 8 is 
also related to this result.

C. No.The number of people who shake hands an
odd number of times is even.This is analogous if
you think of each person as a face of a polyhedron
and a handshake as corresponding to two faces
sharing an edge.

D. The sculpture contains 10 in each of 
12 pentagons, plus 30 along the hexagon edges 
that connect pairs of pentagons, totaling 150.

5.1 Icosahedron and Dodecahedron
Symmetries

Challenge This is the number of mirror planes.
For the icosahedron (and the dodecahedron), it 
is 15. For the cube and octahedron, it is 9. For the
tetrahedron, it is 6.

Q1 6, 10, 15.This is half the number of vertices,
faces, and edges, respectively.

Q2 kn = 30

Q3 By the definition, this is true, but it is not
interesting, so these axes are not usually counted.

(a + b + c + . . . + n)
���2

n1k1 + n2k2��2

Q4 There is one mirror plane for each pair of
opposite edges, 15 planes in all.

Q5 The five-fold axes pass through the centers of
opposite faces.The three-fold axes pass through the
centers of opposite vertices.The two-fold axes pass
through the midpoints of opposite edges. Each
mirror plane contains a pair of opposite edges.
Compared to the icosahedron, the roles of faces and
vertices are switched.

Q6 6, 10, 15, 15

Q7 There are the same numbers of corresponding
symmetry elements.

4. The model is a zomeball with every hole filled in
using a nongreen strut.The directions of the holes
in the zomeball were chosen as the directions of the
icosahedral symmetry axes.

5.2 Simple Polyhedra Symmetries
Challenge Cut four of the sides (left, right, front,
and back) with green diagonals in a way that every
vertex touches one diagonal.There is still a vertical
four-fold axis, and there are 4 two-fold axes in 
the horizontal plane—two axes go through the
midpoints of opposite green struts, and two 
go through the midpoints of opposite vertical 
blue edges.

Q1 There are 5 two-fold axes. Each goes through
the midpoint of a vertical edge and through the
center of the opposite rectangular face.There are 
6 mirror planes. If the prism rests with a base on 
the table, one mirror is horizontal, halfway between
the top and bottom. Each of the other five mirrors
contains a vertical edge and goes through the center
of the opposite rectangle.The axes are contained in
the mirror planes.

Q2 A right prism on a regular n-gon base has one
n-fold axis perpendicular to the bases and n two-fold
axes in the plane halfway between its bases. For n
odd, each two-fold axis goes through one edge and
the center of the opposite face. For n even, half the
two-fold axes connect opposite edge midpoints and
the other half connect opposite face centers. In
either case, there are n + 1 mirrors, including the
plane halfway between the bases.

Q3 There are 5 two-fold axes. Each goes through
the midpoints of two opposite zigzag edges.There

218 Zome Geometry

Answers



are only five mirror planes. (Not six; the plane
midway between the bases is not a mirror plane.)
Each of the five is vertical (meaning it contains the
five-fold axis) and contains two opposite vertices. It
splits two opposite triangles.Another difference
between the prism and antiprism symmetry is that,
in the antiprism, the two-fold axes are not contained
in the mirror planes; they are halfway between the
mirror planes.

Q4 The pentagonal pyramid has 1 five-fold axis and
no other axes.There are five mirror planes. Each
contains the five-fold axis and one slanting edge, and
splits the opposite triangle in half.The square
pyramid has 1 four-fold axis and no other axes.
There are four mirror planes.Two contain the axis
and two slanting edges, and two split two triangles
in half.

Q5 The brick has 3 two-fold axes (each connecting
the center of two opposite faces) and three mirror
planes (parallel to and halfway between opposite
faces).

Q6 The result has the five-fold axis and the 
5 two-fold axes of the original prism, but no 
mirror planes.

7. In one, the top saw blade goes clockwise; in the
other, the bottom one does.

5.3 Cube and Related Symmetries
Challenge See the answer to Question 3.

Q1 The cube has 3 four-fold axes, which connect
the centers of opposite faces.There are 4 three-fold
axes, which connect opposite vertices.There are 
6 two-fold axes, which connect the midpoints of
opposite edges.There are two different kinds of
mirror planes.Three mirror planes are halfway
between opposite pairs of faces, and six mirror
planes each contain a pair of opposite edges.There
are nine mirror planes total.

Q2 The octahedron has 3 four-fold axes, which
connect opposite vertices.There are 4 three-fold
axes, which connect the centers of opposite faces.
There are 6 two-fold axes, which connect the
midpoints of opposite edges.There are two different
kinds of mirror planes.Three mirror planes are
halfway between opposite pairs of vertices, and 

six mirror planes are halfway between pairs of
opposite edges.There are nine mirror planes total.

Q3 The cube and octahedron have exactly the same
symmetry. If one sees past their geometric forms to
the underlying axes and mirrors, they are identical.

Q4 The tetrahedron has 4 three-fold axes (each
connecting a vertex with the center of the opposite
face), 3 two-fold axes (each connecting the
midpoints of opposite edges), and 6 mirror planes
(each containing one edge and the opposite edge’s
midpoint).

Q5 The cube and tetrahedron have their three-fold
axes in the same directions.The two-fold axes of the
tetrahedron align with the four-fold axes of the
cube. (The two-fold axes of the cube are unrelated
to the axes of the tetrahedron.) The mirror planes of
the tetrahedron are six of the mirror planes of the
cube. (The remaining three mirrors of the cube are
unrelated to the mirrors of the tetrahedron.)

Q6 The pyritohedron has 3 two-fold axes,
4 three-fold axes, and 3 mirror planes. It is different
from the cube’s symmetry because there are 
two-fold axes where the cube has four-fold axes.
It has 3 mirror planes, parallel to the cube’s faces.
These are the three mirrors of the cube’s nine that
are not mirrors in a tetrahedron.

Q7 The pyritohedron has exactly the same
rotational axes as the regular tetrahedron but
different mirror planes.

Q8 The Zome cube, when strut orientation is taken
into account, has pyritohedron symmetry.

Explorations 5

A. A blue strut extending each pentagon edge in
the dodecahedron happens to lie on a mirror plane
and does not create a chiral object. One option is to
use a yellow strut to make a spiral inside each face.

B. Cut through the center with a plane
perpendicular to any three-fold axis. In a 
2b1 dodecahedron, the hexagon has edge b3. In a 
2b2 dodecahedron, all ten hexagonal slices can be
shown at once.

C. That 16-hedron has the rotational symmetry of a
regular tetrahedron, but no mirror planes.There are

Zome Geometry 219

Answers



4 three-fold axes. (Each passes through the middle 
of a triangle to the opposite vertex.) There are 
3 two-fold axes. (Where a b1 is opposite another b1,
a two-fold axis connects their midpoints.) The
relation to the tetrahedron may be clearer if you
remove all the b2s, to get a tetrahedral form in
which each of the six edges consists of three b1s 
in a Z shape.

D. These have the same symmetry as the
pyritohedron, 3 two-fold axes, 4 three-fold axes,
and 3 mirror planes.

E. This also has the same symmetry as the
pyritohedron.

6.1 Faces, Vertices, and Edges
Challenge See the answer to Question 1.

1. See table in second column.

Q1 Euler’s theorem: V + F = E + 2 (or another
form of this equation, such as V – E + F = 2). It
holds for any convex polyhedron.

Q2 Substituting F = n and E = �
3
2
n
� into 

V + F = E + 2 gives V + n = �
3
2
n
� + 2.

So, V = �2
n

� + 2.

6.2 Topology
Challenge Use the Schlegel diagrams of an
octahedron and a dodecahedron to find a 
round-trip path.

Octahedron and dodecahedron with
round-trip paths marked

Q1 a.

Tetrahedron

b.

Pentagonal pyramid

Q2 a.

Pentagonal prism
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Polyhedron

tetrahedron

regular octahedron

cube

regular icosahedron

regular dodecahedron

triangular prism

pentagonal prism

n-gon prism

triangular antiprism

pentagonal antiprism

n-gon antiprism

square pyramid

pentagonal pyramid

n-gon pyramid

F

4

8

6

20

12

5

7

n + 2

8

12

2n + 2

5

6

n + 1

V

4

6

8

12

20

6

10

2n

6

10

2n

5

6

n + 1

E

6

12

12

30

30

9

15

3n

12

20

4n

8

10

2n

6.1, 1. ( from previous column)



b.

Pentagonal antiprism

Q3 a.

Octahedron

b.

Dodecahedron

c.

Icosahedron

Q4 One method is to start with a tetrahedron 
(V = 4, E = 6) and add two new edges, each to 
two new vertices.The figure shows three ways of
drawing this, but they all correspond to the same
polyhedron topologically. It has two 3-gons, two 
4-gons, and two 5-gons.There are many ways to
construct a geometric realization of it, as you can
choose the angles and lengths. One choice, easy to
build with the Zome System, is to start with two
regular b1 pentagons joined as in a dodecahedron,
then add two b2s and a b3 so that the triangles will
be isosceles and the 4-gons will be trapezoids.

Three Schlegel diagrams of polyhedra 
with 8 vertices and 12 edges

Zome noncube polyhedron with 
8 vertices and 12 edges

Q5 Any convex polyhedron with 8 vertices and 
12 edges will have 6 faces.

Q6–Q7 When a pyramid is erected over an n-gon
face, that face is replaced by n triangular faces, and a
new vertex and n edges are added. So, F increases by
n – 1, V increases by 1, and E increases by n. Both
sides of V + F = E + 2 increase by n, preserving 
the equality.

Q8–Q9 Truncating a vertex where n faces meet
eliminates the vertex but adds n new vertices and 
n new segments surrounding the new face. So, V
is increased by n – 1, F is increased by 1, and E
is increased by n, again preserving equality.

Explorations 6

A. Euler’s formula, V + F = E + 2, also applies to
figures in the plane.The example shows that Euler’s
theorem applies more generally than just to
polyhedra.

B. There are five altogether, including the 5-gon
prism. If you truncate one vertex of a cube, you get
a polyhedron with 6 + 1 = 7 faces and 10 vertices.
(It has three 4-gons, three 5-gons, and one 3-gon.)
Alternatively, you can truncate three vertices of a
tetrahedron to get a polyhedron with 4 + 3 = 7
faces and 10 vertices. (It has three 3-gons, three 
5-gons, and one 6-gon.) Two others result from
truncating two vertices of a triangular prism. In light
of Euler’s theorem, we do not need to count the
edges of these different models, because any convex
polyhedron with 7 faces and 10 vertices must have
15 edges.

C. A pyramid on a hexagonal base has V = 7 and 
F = 7. Cutting off one corner of a cube with a
deeper cut, so the slicing plane touches one, two, or
three adjacent vertices, gives polyhedra with F = 7
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and V = 9, 8, or 7, respectively.To get V = 6, do this
last operation on both sides, leaving a square base
and six triangular faces.

Three cubes with one corner truncated,
giving polyhedra with F = 7 and V = (9, 8, 7)

D. The missing part of the proof is that E ≥ �
3
2�V,

which is dual to E ≥ �
3
2�F. One way to see it directly

is to imagine snipping each strut in half at its
midpoint.Then each vertex is connected to at least
three half-edges.As the number of vertices must be
at least 4, E = 7 implies V = 4. But by Euler’s
theorem, F = 4 and V = 4 implies E = 6 (giving the
tetrahedron), contradicting the assumption that 
E = 7.This result and proof were first given by
Euler himself.

E. For (p – 2)(q – 2) < 4, the only possibilities for
(p – 2) and (q – 2) are 1, 1 or 1, 2 or 2, 1 or 1, 3 or
3, 1.These give us the Platonic solids {3, 3}, {3, 4},
{4, 3}, {3, 5}, and {5, 3}, respectively: the
tetrahedron, octahedron, cube, icosahedron, and
dodecahedron.

F. From 2 = k��
1
q� – �

1
2� + �

1
p�� and qV = k, we eliminate

k and solve for V to get V = �2p – p
4
q
p

+ 2q�.And from
pF = k we get F = �2p – p

4
q
q

+ 2q�. Notice the duality: If
we change p to q and vice versa, the formulas for V
and F are interchanged.

7.1 Finding the Patterns Using Geometry

1. Answers will vary, depending on the
parallelograms, but here is an example:

Zome parallelogram of six struts

b1 b2

r1

r2

b3

r3

1 1 1
2

3

2

Q1–Q3 Opposite angles of the figure are equal, as
shown by inspecting the balls at the vertices.

Zomeball with red and blue struts in
acute angles of previous figure

Therefore, this is a parallelogram.

Q4 Opposite sides of a parallelogram are equal.

Q5 Students will find that not every isosceles
triangle they can make using the sum property will
allow the extra zomeball(s) to be connected as the
problem requires.A triangle with a b2 base and one
equal side of b1 + b2 will work if the b1 strut is
adjacent to the base.The smallest isosceles triangle
has the same vertex angle as the largest one, as
shown by inspecting the zomeballs at the vertices.
Or you can use the fact that the isosceles triangles
share one base angle, so all the corresponding angles
must be equal, and therefore the triangles are similar.

Q6 Since the triangles are similar, their
corresponding sides are proportional, which 
proves the ratio pattern.

Q7 Students will find that not every isosceles
triangle they can make using the sum property will
allow the extra zomeball(s) to be connected as the
problem requires.The equal side made up of y1 + y2

and the base of b1 + b2 must have the shorter part of
the side next to the same vertex.The smallest
isosceles triangle has the same vertex angle as the
largest one, as shown by inspecting the zomeballs at
the vertices. Or you can use the fact that the
isosceles triangles share one base angle, so all the
corresponding angles must be equal, and therefore
the triangles are similar.

Q8–Q9 �
b
y2

2� = �y1

b
+

3

y2
�; therefore �

b
y2

2� = �y
b

3

3�, which is
equivalent to �

y
y2

3� = �
b
b

3

2
�.A similar proof shows the

other equalities.
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7.2 Finding the Patterns Using
Measurement

Challenge They would measure to make sure the
lengths sum properly and are in the proper ratio.

Q1 Answers should be within a millimeter of these
measurements:

Q2 Sums should be within a couple millimeters of
196, 170, 186.

Q3–Q4 Answers will be near 1.62.

Q5 1.62

Q6 b0 = 46 mm, y0 = 40 mm, r0 = 44 mm,
b4 = 318 mm, y4 = 275 mm, r4 = 301 mm

Q7 Yes, it does.

7.3 The Golden Ratio and Scaling
Challenge See the answer to Question 3.

Q1 τ, τ2

Q2 1 + τ = τ2 or τ2 – τ – 1 = 0

Q3 τ = �
1±

2
�5�
� ≈ 1.618 . . .

Q4 a. �
1
τ� = 0.618 . . .

b. τ2 = 2.618 . . .

Q5 τ
Q6 Multiply both sides of the equation by τ, or
by τn.

Q7 x4 = x2 + x3
x5 = x3 + x4 = x3 + x2 + x3 = x2 + 2x3

1. Possibilities include y2-b3-r3 and 
y3-(b2 + b3)-(r2 + r3).

Q8 The ball is a physical object that models the
vertex—a mathematical point at its center.The ball
could be made larger or smaller and the strut
correspondingly smaller or larger as long as the
centers remain at the same distance.The actual
plastic struts do not satisfy either the sum or the
ratio patterns since they are each one zomeball
diameter less than the values that do. Let the ball
diameter be d; then (b1 – d) is the short plastic strut
length, one-half diameter less on each end than the
center-to-center distance b1. Summing (b1 – d) and
(b2 – d) does not give (b3 – d), as it gives (b3 – 2d).
This can be seen visually by laying the struts next to
each other without balls on the ends.

Explorations 7

A. Annexing a square along the long edge of a
golden rectangle creates a golden rectangle of the
next larger size. Conversely, removing a square from
a golden rectangle leaves a golden rectangle of the
next smaller size.

B. The scaling factor is τ2 because the next
pentagon is size b3.After that comes b5, which can
be built as 2b3 + b2.

C. A 36-degree V of b2s is the sides of an isosceles
triangle with a b1 base. So, scaling down by τ, a 
36-degree V of b1s places two balls at b0 distance,
even though there is no strut that fits in there. Using
two of those “invisible b0s” in a 36-degree V gives
b(–1) separation. Repeating smaller, we see the balls
touch when we create a b(–2) center-to-center
separation.

D. A plot shows that the ratios �
Fi

F
+

i

1� approaches τ as
i gets large.They wiggle around the value 
1.61803 . . . , alternately too large or too small, but
always getting closer to it.

E. The ratios of consecutive terms in any
Fibonacci-like sequence approach τ.The same
limiting ratio is approached no matter what integers
are chosen as starting values.The sequence discussed
in this unit, 1, τ, τ2, τ3, . . . , is both a geometric
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b1

b2

b3

y1

y2

y3

r1

r2

r3

LengthStrut

75

121

196

65

105

170

71

115

186



sequence and a Fibonacci-like sequence at the same
time.The only other number with this property is
the negative root to the quadratic equation satisfied
by τ.

8.1 Basic Tessellations

1. Whatever triangle you make will tessellate the
plane. One technique for building the tessellation is
to alternate the original triangle with a copy that is
rotated 180 degrees, thereby creating a parallelogram
that repeats to form a strip.Then the strips can be
juxtaposed.

Q1 The three different interior angles sum to 
180 degrees. In one possible tessellation, each angle
appears twice at every vertex of the tessellation, to
make 360 degrees around every vertex.

2. Whatever quadrilateral you make will tessellate
the plane. One way to generate the tessellation is to
rotate the quadrilateral 180 degrees around the
midpoint of a side in order to get the next copy of
the tile.

Q2 The four interior angles sum to 360 degrees,
and each angle appears once at every vertex of the
tessellation.

3. With the Zome System, two sides of the
pentagon must be parallel.A pentagon made by
joining a parallelogram and a triangle will work.
Outside of the Zome System, other pentagons will
tessellate.The pentagon cannot be regular, and there
must be more than one type of vertex.

Q3 The sum of the angles around a vertex is 
360 degrees.

4. There are three: equilateral triangles, squares, and
regular hexagons. No others are possible with just
one type of regular polygon, because for n polygons
to meet at a vertex, the interior angle of the
polygon must be 360/n, and these three are the only
such polygons.

Q4 Answers will vary.

5. (3, 6, 3, 6) is illustrated with the question.
(3, 3, 3, 3, 6) and (4, 8, 8) are illustrated here.
Students might sketch, but cannot construct with
the Zome System, any of (3, 12, 12), (3, 3, 3, 4, 4),
(3, 3, 4, 3, 4), (3, 4, 6, 4), or (4, 6, 12).

Archimedean tessellation (3, 3, 3, 3, 6)

Archimedean tessellation (4, 8, 8)

Q5 Both polyhedra and tessellations involve
polygons meeting edge-to-edge. In both cases there
are special highly structured cases that are regular or
Archimedean. (Archimedean polyhedra are the
subject of Unit 12.) Because tessellations are planar,
the sum of the vertex angles is always 360 degrees.
In polyhedra, the sum of the angles at any vertex
can vary; in convex polyhedra, it is always less than
360 degrees, as we will see in Unit 10.

8.2 Nonperiodic Tilings

1. One solution is to use the 36-, 60-, or 72-degree
rhombus, making one tessellation by simply
translating the rhombus and another tessellation by
reflecting the rhombi in one row to get the next
row. (This will not work with red or yellow Zome
System rhombi, even though it is easy to make a
rhombus tessellation based just on translation.)
Changing the length of just one direction of lines
changes the tessellation to a repetition of
parallelograms.
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Q1 One solution is to start with the tessellation of
regular hexagons and dissect them all into rhombi,
giving a tessellation with one type of face and two
types of vertices (three-fold and six-fold).

Q2 The kites have interior angles of 72, 72, 72, and
144 and the darts of 72, 36, 216, and 36.

2.

Zome tessellation of kites and darts

3. This is Zome-constructible in blue.

4. The method used in the first model of
alternating the slants will work here as well.

5.

A nonperiodic tiling of Penrose rhombi

Explorations 8

A. One possibility:

Zome tessellation with 
a nonconvex quadrilateral

b1

b3

B. One possibility:

Zome tessellation with 
pentagons and rhombi

D. Scale so that the triangles are b2-b3-b3.

F. All three are Zome-constructible in blue.

9.1 Dual Tessellations

Q1 They would form the tessellation of equilateral
triangles.

Q2 They would form another tessellation of squares.

Q3 A self-dual structure is dual to a copy of itself.

Q4 The tessellation of hexagons again

Q5 A tessellation of 60-degree rhombi

Q6 The dual of the dual always gives back the
original tessellation.An edge at right angles to the
right angle gives the original direction again.

Q7 a. If the struts in the hexagonal tessellation are
of length 1, then use of the Pythagorean theorem
shows that each strut in the dual tessellation of
triangles should have length �3�.The length of the
next larger size strut is 1.618, not quite 1.732. If we
made a large enough model, this discrepancy would
show up clearly.

b. We know T = �3� H in the dual tessellations,
where T is the triangle strut length and H is the
hexagon strut length.Therefore, H = �

�
T

3�
� or,

equivalently, H = ��
�
3
3���T.

c. The two factors are reciprocal.

9.2 Dual Platonic Solids
Challenge Cube and octahedron, or icosahedron
and dodecahedron, or two tetrahedra.
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Q1 The octahedron. Four octahedron edges meet
above each cube face.

Q2 The cube.Again, the dual to the dual gives back
the original structure.

1. This can be done with a 2b1 cube and a 
2g1 octahedron (or 2b2 and 2g2).Their edges will
cross each other at right angles at the midpoints.

Q3 The compound of cube and octahedron in dual
position shows that there is a cube vertex in the
middle of each octahedron face and an octahedron
vertex in the middle of each cube face. So the fact
that one has 6 faces and 8 vertices while the other
has 8 faces and 6 vertices is not a coincidence but a
consequence of the fact that they are dual.

2. This can be done with a 2b2 icosahedron and a
2b1 dodecahedron.Their edges will cross each other
at right angles at the midpoints.

Q4 The compound of icosahedron and
dodecahedron in dual position shows that there 
is a dodecahedron vertex in the middle of each
icosahedron face and an icosahedron vertex in the
middle of each dodecahedron face. So the fact that
one has 20 faces and 12 vertices while the other has
20 vertices and 12 faces is not a coincidence but a
consequence of the fact that they are dual.

Q5 The dual has m vertices, k faces, and n edges.
We can always imagine a compound with each
polyhedron having one vertex inside each face of
the other.There is a one-to-one mapping between
the faces of one and the vertices of the other.

Q6 The dual also satisfies Euler’s theorem. In the
original, V + F = E + 2. In the dual, we would add
F + V = E + 2, giving the same sums, just switching
the order of the terms on the left side, that is,
switching the number of faces with the number of
vertices.

9.3 Dual Polyhedra
Challenge See the answer to Question 1.

Q1 The dual has ten kite-shaped faces. Each kite is
made of two b1s and two b3s (or a scaled-up version
of this). Corresponding to the top and bottom 
5-sided face of the antiprism, the dual has a top 
and bottom vertex with five edges.Traditionally, this
form is called a trapezohedron even though it is not

made of trapezoids. (There is an older, British sense
of the word trapezoid that means a quadrilateral with
no parallel sides.) 

Q2 The dual to an n-gon pyramid is another n-gon
pyramid, but upside-down relative to the first one.
In the self-dual pentagonal case, making the 
2y3 struts as y1-y3-y2 (or y1-y2-y3) puts a ball at the
distance y1 from the base, which is where it crosses
at right angles the edge of the dual pyramid.

The dual of a pentagonal pyramid is another
pentagonal pyramid. It is self-dual.

2. Every n-gon pyramid is self-dual.The
tetrahedron is the special case when n = 3.The 
stella octangula is the compound of a regular
tetrahedron with its dual regular tetrahedron.

Q3 v = �ƒ
1

� or ƒ = �
1
v�.

Q4 Generally, if two dual polyhedra are arranged
with their edges tangent to a unit sphere, the
distance from one’s vertex to the center of the
sphere is the reciprocal of the distance from the
other’s face to the center of the sphere.This relation
is so handy that it is often convenient to normalize
lengths so a polyhedron is midscribed to the unit
sphere, meaning the edges are tangent to the sphere.

Explorations 9

A. Dual to (3, 3, 3, 3, 6) is a tessellation of irregular
pentagons. Dual to (4, 8, 8) is a tessellation of
isosceles right triangles.

B. The dual is the icosidodecahedron, which has 
12 pentagons and 20 triangles.The compound can
be made with 2b2 edges for the icosidodecahedron
and r1 + r3 edges for the rhombic triacontahedron.
The right-angle crossing occurs at the midpoint of
the icosidodecahedron’s edges, but it is not the
middle of the rhombic triacontahedron’s edges.

C. There is one with ten kites each consisting of
two r1s (along the skew 10-gon) and two y3s
(connecting to the pole). In another, the kites consist
of two y1s and two r2s, in the corresponding places.

D. An n-gonal dipyramid—it is shaped like 
two n-gonal pyramids glued base-to-base. It has 
2n isosceles triangles for faces and n + 2 vertices 
(n around the equator and 2 poles).The regular
octahedron is a special case of such a 4-gonal
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dipyramid. In general, n-gonal dipyramids cannot be
made with the Zome System.

E. The inside has an octahedron-shaped cavity, so a
small spherical weight always lands inside one of the
six vertices of the octahedron. It is positioned like
the dual to the cube, with each octahedron vertex
centered inside one of the six faces (marked with
one to six dots). On the same principle, 20-faced,
icosahedral spherical dice would have
dodecahedron-shaped cavities.

10.1 Angular Deficit
Challenge The smallest sum is with three 
36-degree angles, totaling 108.The largest sum 
is 360, formed by putting three struts anywhere 
in a common plane.

Q1 360 – 5(60) = 60

Q2 12(60) = 720

1. See table below.

Q3 The total angular deficit of any polyhedron is
720 degrees.

2.

Zome partial icosahedral dome

Q4 At the vertices where six triangles meet, the
angular deficit is zero. So only the five-fold vertices
contribute to the sum of 12(60) = 720.

Q5 In any frequency icosahedron, there will be 
12 five-fold vertices; the rest are six-fold, so the 
sum is 720.
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Number of
vertices At each vertex Total

cube

regular icosahedron

regular octahedron

regular dodecahedron

regular tetrahedron

triangular prism

pentagonal prism

n-gon prism

pentagonal antiprism 
(with equilateral sides)

n-gon antiprism

Angular deficit

8

12

6

20

4

6

10

2n

10

2n

90

60

120

36

180

120

72

�
36
n
0

�

72

�
36
n
0

�

720

720

720

720

720

720

720

720

720

720

Polyhedron



3.

Zome rhombic triacontahedron

Q6 a. 180 – x

b. 12(360 – 5x) + 20(360 – 3(180 – x)) = 720
(The x’s drop out when you simplify the left side,
so we cannot use this equation to solve for x. A
method of determining x will be seen in Unit 13.)

Q7 a. 180 – 2x

b. 5(360 – (108 + 2x)) + 
(360 – 5(180 – 2x)) = 720.Again, the x’s drop out.

Q8 n(360 – (180 – ��
36
n
0

��+ 2x)) + 
(360 – n(180 – 2x)) = 720. Here, n and x drop out.

10.2 Nonconvex Polyhedra 

Q1 Both theorems hold for the indented
polyhedron.

Q2 V = 16, F = 16, E = 32, so V + F = E. This 
is a variation of Euler’s theorem that applies to all
one-hole donuts.

Q3 At eight of the vertices, there are two 90-degree
angles and two angles of 90 – x degrees, totaling to
360 – 2x, which is a 2x deficit.At the other eight
vertices, there are two 90-degree angles and two 
90 + x-degree angles, totaling to 360 + 2x, which 
is a –2x deficit.The total angular deficit is 
8(2x) + 8(–2x) = 0.The angular deficit on a 
one-hole donut polyhedron is always zero.

Q4 There are 15 vertices, 24 edges, and 12 faces;
Euler’s theorem is not satisfied. Descartes’ theorem is
not satisfied either since there are 14 vertices with
an angular deficit of 90 and one with –180 for a
total of 1080.

Q5 There are 16 vertices, 24 edges, and 12 faces;
Euler’s theorem is not satisfied. Descartes’ theorem is

not satisfied either since there are 16 vertices with
an angular deficit of 90.

Explorations 10

A. Both theorems will apply to a polyhedron that 
is merely indented. If there are unusual angles,
however, the student may have to wait until Unit 13
to find their exact measure.

B. Each vertex has a 108-degree angle from the
pentagon and two 120-degree angles from the
hexagons.They sum to 108 + 120 + 120 = 348,
leaving a deficit of 360 – 348 = 12 degrees.The
total deficit of 720 comes from adding up the 12s of
the n vertices, so n = �

7
1
2
2
0

� = 60. One can verify this
from the model because every pentagonal vertex 
is a different vertex of the polyhedron, so the 
12 pentagons provide 12(5) = 60 vertices.

C. It is not possible.Those three faces would
contribute 60 + 90 + 108 = 258 to each vertex,
leaving an angular deficit of 360 – 258 = 102.The
number of vertices would have to be �

7
1
2
0
0
2�, which is

not an integer.

D. Since there are 120 identical vertices, each 
must have an angular deficit of �

7
1
2
2
0
0� = 6 degrees.

So, we need to find three regular polygons that 
have interior angles summing to 354 degrees.
Searching among the Zome-constructible choices,
we find a square, a hexagon, and a decagon give 
90 + 120 + 144 = 354. If you can’t construct it,
peek ahead to the truncated icosidodecahedron of
Unit 12.

E. If the pentagons and hexagons are regular, there
must be three edges per vertex since more faces
would exceed 360 degrees. So, V = �

5V5 +
3

6V6�.
Substituting and solving for V5, the V6s cancel and
we find V5 = 12. In fact, the assumption of regular
polygons is not essential here; if we assume only that
every vertex has three faces, any polyhedron
consisting of pentagons and hexagons must have
exactly 12 pentagons.

11.1 One Cube

Q1 6 faces, 12 edges, 8 vertices for the cube;
12 faces, 30 edges, 20 vertices for the dodecahedron.
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Q2 The angles are right angles because all of them
are equal, as can be seen by inspecting the balls.The
sides are equal, because they are all bxs.

Q3 The four-fold axes of the cube align with 3 of
the dodecahedron’s 15 two-fold axes.

11.2 Five Cubes
Challenge Yes, you can fit five cubes into the
dodecahedron.

Q1 There is one square behind each of the
dodecahedron’s edges. Since it has 30 edges, there
are 30 squares.

Q2 The 30 squares, at 6 squares per cube, make 
5 concentric cubes.

Q3 Six of the second cube’s edges would intersect
some edge of the first cube.

Q4

Pentagram inside a pentagon

Q5 The edges are of length 
b2 + b1 + b2 = b2 + b3 = b4.
(See Unit 7 on the golden ratio.)

Q6 Each cube has 4 three-fold axes of symmetry.
Each of the four aligns with 1 three-fold axis of one
of the other four cubes, where the two cubes share a
vertex. Five cubes times 4 three-fold axes per cube
would give 20 axes, but, because they superimpose
in pairs, divide by 2 to find there are only ten
directions, which account for all ten of the
dodecahedron’s three-fold axes.The 3 four-fold axes
of each cube align with 3 of the dodecahedron’s
two-fold axes. Each cube relates to a different set of
three, accounting for all 15 of the dodecahedron’s
two-fold axes.The five-fold axes of the
dodecahedron do not align with any aspect of the
cube’s symmetry, and the two-fold axes of the cubes
do not align with any aspect of the dodecahedron’s
symmetry.

11.3 Related Constructions
Challenge The vertices can be chosen so that the
struts of the five tetrahedra do not intersect each
other, so no scaling up is necessary.

1. A g1 tetrahedron is built from four of the vertices
of a b1 cube.This was the scaffolding method of
constructing the regular tetrahedron in Unit 3.

2. A g2 tetrahedron is built in a b1 dodecahedron.
Depending on which tetrahedron in the cube in the
dodecahedron is chosen, there are two mirror-image
ways of doing this.

Q1 There are two ways; one is the mirror image of
the other.

4. The 2b1 icosahedron has its 12 vertices lying on
the 12 edges of the g1 + g2 octahedron.

Q2 An icosahedron in a tetrahedron, because the
tetrahedron is self-dual and now appears on the
outside.

5. Simply extend the octahedron into a 
3g3 tetrahedron by adding tetrahedra to four of its
faces.There are two mirror-image ways to do 
this, depending on which four faces you pick.

Explorations 11

A. If the roof doesn’t fit, try turning it 90 degrees.

B. This makes clear that the faces of the rhombic
triacontahedron appear in five groups of six.Any
group of six is like the planes of the cube—opposite
faces parallel and other pairs perpendicular.

E. Yes, a g2 octahedron can be inscribed in a 
2b1 icosahedron.The octahedron vertices are six 
of the icosahedron’s edge midpoints.

F. The model has eight spikes, pointing to the
corners of a cube.The inner 12 vertices are
positioned as in an icosahedron.

G. The green 60-degree angles are the tetrahedron
points; the blue ones are the concave 5-way indents.
The two-fold axes pass through the g1’s midpoints.
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12.1 The Icosidodecahedron
Challenge The pentagonal pyramid and the
pentagonal antiprism can be constructed with only
regular pentagons and equilateral triangles.The
pentagonal antiprism can be obtained by removing
two opposite pyramids from an icosahedron.This
gives a polyhedron with ten triangles and two
pentagons.You can instead remove two pyramids
that are not opposite to make a different polyhedron
with ten triangles and two pentagons. (This is
analogous to an isomer in chemistry—a different
arrangement of the same components.) Another
possibility is to remove only one pyramid.Yet
another is to remove three pyramids, giving a
polyhedron with three pentagons and five triangles.
These are all varieties of diminished icosahedra. The
remaining Zome-constructible convex polyhedron
consisting of pentagons and triangles is the
icosidodecahedron. Others could be built with
paper; for example, cut an icosidodecahedron in half
along a decagon cross section and glue the halves
together after rotating one 36 degrees.

Q1 There are 20 triangles and 12 pentagons.

Q2 The Greek prefixes for 20 (icosi-) and 12
(dodeca-) are combined.Also, the faces are in planes
corresponding to those two Platonic solids, and they
appear in the same numbers and in the same relative
positions.

Q3 There are 60 edges. Here are some counting
strategies:

1. Each edge is part of a unique pentagon, so 
12 pentagons times 5 edges each gives 60 edges.

2. Each edge is part of a unique triangle, so 
20 triangles times 3 edges each gives 60 edges.

3. See it as six large regular 10-gons (six equators);
6 times 10 gives 60 edges.

Q4 There are many ways to count the 30 vertices.
One involves combinations:Any two of the six
decagon equators cross twice (at an opposite pair of
vertices), so there are 6C2 pairs of vertices—that is,
�(6 –

6
2
!
)! 2!� pairs—and 15 times 2 equals 30 vertices.

Q5 Five-fold axes pass through the centers of
opposite pentagons, and three-fold axes pass through

the centers of opposite triangles.The two-fold axes
pass through opposite vertices.There are 15 mirror
planes.

Q6 It is the same symmetry, called icosahedral
symmetry.

12.2 Archimedean Solids and Notation
Challenge Prisms, antiprisms, and the Archimedean
solids listed in Questions 2, 3 and 5.

Q1 a. The vertex at the top of the pyramid is not
equivalent to the other vertices.

b. They contain only one type of polygon.

c. Rectangles are not regular 4-gons.

Q2 The n-gon prism is (4, 4, n).

Q3 The n-gon antiprism is (3, 3, 3, n).

Q4 (6, 6, 6): 360 degrees of interior angles at a
vertex makes a tessellation.
(8, 8, 8): More than 360 degrees of angle at a vertex
is impossible.

Q5 The 13 Archimedean solids are: truncated
tetrahedron (3, 6, 6); truncated octahedron (4, 6, 6);
truncated cube (3, 8, 8); truncated dodecahedron 
(3, 10, 10); truncated icosahedron (5, 6, 6);
cuboctahedron (3, 4, 3, 4); icosidodecahedron 
(3, 5, 3, 5); rhombicuboctahedron (sometimes 
called the small rhombicuboctahedron) (3, 4, 4, 4);
truncated cuboctahedron (sometimes called the 
great rhombicuboctahedron) (4, 6, 8); snub 
cube (3, 3, 3, 3, 4); rhombicosidodecahedron
(sometimes called the small rhombicosidodecahedron) 
(3, 4, 5, 4); truncated icosidodecahedron 
(sometimes called the great rhombicosidodecahedron) 
(4, 6, 10); and snub dodecahedron (3, 3, 3, 3, 5).

12.3 Archimedean Solids in the Zome
System

Challenge The image by Kepler shows the 
final forms.

Q1 See table on page 231.
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Answers

Polyhedron

*truncated tetrahedron,
(3, 6, 6)

*truncated cube,
(3, 8, 8)

*truncated octahedron,
(4, 6, 6)

truncated icosahedron,
(5, 6, 6)

truncated dodecahedron,
(3, 10, 10)

*cuboctahedron,
(3, 4, 3, 4)

icosidodecahedron,
(3, 5, 3, 5)

*rhombicuboctahedron,
(3, 4, 4, 4)

rhombicosidodecahedron,
(3, 4, 5, 4)

*truncated cuboctahedron,
(4, 6, 8)

truncated icosidodecahedron,
(4, 6, 10)

snub cube,
(3, 3, 3, 3, 4)

snub dodecahedron,
(3, 3, 3, 3, 5)

Faces

8

14

14

32

32

14

32

26

62

26

62

38

92

a.

b.

c.

d.

e.

f.

g.

h.

i.

j.

k.

l.

m.

Edges

18

36

36

90

90

24

60

48

120

72

180

60

150

Vertices

12

24

24

60

60

12

30

24

60

48

120

24

60

5-fold
axes

0

0

0

6

6

0

6

0

6

0

6

0

6

4-fold
axes

0

3

3

0

0

3

0

3

0

3

0

3

0

3-fold
axes

4

4

4

10

10

4

10

4

10

4

10

4

10

2-fold
axes

3

6

6

15

15

6

15

6

15

6

15

6

15

Mirrors

6

9

9

15

15

9

15

9

15

9

15

0

0

Symmetry
of the

tetrahedron

octahedron

octahedron

icosahedron

icosahedron

octahedron

icosahedron 

octahedron

icosahedron

octahedron

icosahedron

rotations of
octahedron

rotations of
icosahedron 

12.3, Q1 ( from page 230)



Explorations 12

A. Three tessellations are like the Platonic solids,
but planar: {4, 4}, {6, 3}, and {3, 6}. In the two-
dimensional version of truncation, truncating {4, 4}
gives (4, 8, 8); truncating {6, 3} gives (3, 12, 12); but
truncating {3, 6} gives {6, 3} again.Truncating 
{6, 3} or {3, 6} to the edge midpoints gives 
(3, 6, 3, 6); but truncating {4, 4} to the edge
midpoints gives {4, 4} again (rotated 45 degrees).

B. From the icosidodecahedron, you get a
compound with the rhombic triacontahedron 
(30 red rhombi). From the cuboctahedron, you 
get a compound with the rhombic dodecahedron 
(12 yellow rhombi). From a 2g1 cuboctahedron, the
resulting rhombic dodecahedron has length 3y1, with
edges divided at the one-third point.

C. The faces in the plane of a tetrahedron will be
ones with three-fold symmetry—for example, four
triangles of the truncated cube or four hexagons of
the truncated icosahedron.You can build a large
regular tetrahedron, place any Archimedean solid
inside it, with a triangle or hexagon down, and
rotate it until three other faces (triangles or
hexagons) are parallel to the top three faces of the
tetrahedron.

D. Expanding the cube or octahedron gives the
rhombicuboctahedron. Expanding the icosahedron
or dodecahedron gives the rhombicosidodeca-
hedron. Expanding the tetrahedron gives the
cuboctahedron.The icosidodecahedron can be
expanded using red struts to make 60 rectangles,
each surrounded by a triangle, a rhombus, a
pentagon, and another rhombus.

E. The rhombicuboctahedron has regular 8-gon
slices, and the rhombicosidodecahedron has regular
10-gon slices. In the first case an isomer is possible
by twisting one cap 45 degrees, and in the second
case there are several isomers as one or two caps can
be twisted.

F. The model consists of twelve 5-gons, twenty 
3-gons, and sixty isosceles right triangles.

G. The cuboctahedron and icosidodecahedron are
quasi-regular.The first is the intersection of the cube
and octahedron when their dual pair is constructed.
The second is the intersection of the icosahedron
and dodecahedron when their dual pair is
constructed.

H. The snub tetrahedron is (3, 3, 3, 3, 3), which is 
{3, 5}, the icosahedron.

13.1 Lengths
Challenge r1 = units; y1 = �

�
2
3�� units

Q1 a. τb1

b. τ2
b1

Q2 a. golden

b.

c. approximately 1.61803

Q3 From the isosceles right triangles you know 
g1 = �2� b1 or �2� units, and g2 = �2� b2 = τ�2� b1,
so g2 = τ�2� units.

1. The long diagonal of a b1 cube can be
constructed as 2y1.

Q4 A face diagonal has length g1 = �2� b1.
The cube’s diagonal has length 
�(b1)

2 +� (�2�b�1)
2� = �3�b1, so 

y1 = � �b1

Q5 y2 = τy1 = � � b1, and y3 = τ2
y1 = � �b1.

Q6 A right triangle with legs b1, and b3 has 
hypotenuse 2y2. So (2y2)

2 = b1
2 + (b1τ

2)2.
Solving for y2 gives 

y2 = � �b1

Q7 It follows from b3 = τ2
b1, b2 = τb1, and 

b3 = b2 + b1.

Q8 See table on page 233.

Q9 You see a Fibonacci sequence in the second and
third columns.The columns are shifted by one row
relative to each other. Each entry is the sum of the
two entries above it.

Q10 From the table, τ4 = 2 + 3τ. So you can
simplify:

y2 = b1 = b1 = b1

= b1 = b1
τ�3�
�2

�3(τ2)�
�2

�3(1 +�τ)�
��2

�3 + 3τ�
�2

�1 + τ4�
�2

�1 + τ4�
�2

τ2�3�
�2

τ�3�
�2

�3�
�2

1 + �5�
�2

�2 + τ�
�2
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3. A right triangle with legs b1 and b2 has
hypotenuse 2r1.

Q11 So (2r1)
2 = b1

2 + (b1τ)2. Solving for r1 gives 

r1 = b1 = b1

Q12

Right triangles with hypotenuse τb1

Since b1 and b2 are in the red plane, the angle
between them is 72 degrees;

sin 72 = 

Q13 sin 72 = = = 

= = 
�2 + τ�
�2

�4 – (2�– τ)�
��2

�4 – τ–2�
�2

�4τ2 – 1�
��2τ

�τ2 – ��
1
2���2���τ

�τ2 – ��
1
2���2���τ

b12
1

4
1

72°

� 2 �b1b1–

�2 + τ�
�2

�1 + τ2�
�2

So (sin 72) b1 agrees with the value for r1 found in
Question 11.

Q14 r1 = (sin 72) b1, and y1 = (sin 60) b1.

5.

Triangle and pentagon 
with dropped perpendiculars

Q15 Yes, the exterior angle of the pentagon is 
72 degrees; sin 72 = �b

r1

1
�.

Q16 A Zome model shows that the ratio of
diagonal to edge in a dodecahedron is �

2
b
y
1

2�. Knowing 

y2 = τy1 = b1 = b1

you get

�
2
b
y
1

2� = 

as the diagonal-to-edge ratio. For a 10-meter edge,
there is a 5(�3� + �15�) meter diagonal. For
engineering or construction purposes, an
approximate numerical answer is usually desired,
which is determined with a calculator as 28 meters.

13.2 Angles
Challenge See Questions 1–8.

Q1 The angles are 36°, 72°, 60°, 90°, 108°, 120°,
144°, and 180°.

Q2 The angle between a red pole and any of the
ten blue struts in the red plane is a right angle.The
angle between a yellow pole and any of the six blue
struts in the yellow plane is also a right angle.These
can also be seen as a right angle between a blue pole
and a red or yellow strut in the blue plane.

2. A right triangle with legs b1 and b3 has
hypotenuse 2y2, and a right triangle with legs b1

and b2 has hypotenuse 2r1.

Q3 The most convenient way to characterize α and
β is by their tangent. From the triangles, you see α
has tangent �τ

1
2� and β has tangent �

1
τ�.Writing arctan(x)

�3� + �15�
��

2

(1 + �5�)�3�
��4

τ�3��2

b1

b1b1r1

b1b1

b1 y1

b1

b1

Zome Geometry 233

Answers

Power of τ

τ–2

τ–1

τ0

τ1

τ2

τ3

τ4

τ5

τ6

Constant

2

–1

1

0

1

1

2

3

5

Coefficient of τ

–1

1

0

1

1

2

3

5

8

Expression

2 – τ

–1 + τ

1

τ

1 + τ

1 + 2τ

2 + 3τ

3 + 5τ

5 + 8τ

13.1, Q8 ( from page 232)



for the arctangent function (the angle with tangent
x), you have α = arctan �τ

1
2� and β = arctan �

1
τ�. Hence,

α ≈ 20.91 degrees and β ≈ 31.72 degrees. (We use
fractions of a degree rather than minutes and
seconds.) 

Q4 The interior angles of a red rhombus are 2β and
180 – 2β, approximately 63.44 and 116.56 degrees.

Q5 The interior angles of that yellow rhombus are
2α and 180 – 2α, approximately 41.81 and 138.19
degrees.

Q6 The angle between an adjacent red and yellow
strut is 90 – α – β, approximately 37.38 degrees.

Q7 Let an altitude bisect the yellow-yellow angle.
You have a right triangle with hypotenuse and
one leg �

1
2�. By the Pythagorean theorem, the other

leg must be , and γ = arctan�2�, approximately
54.74 degrees.

Q8 It can be described as 2(90 – γ) or 2 arctan ,
approximately 70.53 degrees.

Q9 γ
Q10 2α
Q11 2β
Q12 180 – 2γ
Q13 2γ
4. Cut the rhombus in half one way to get a 
2b1-2y1-2y1 isosceles triangle, and cut the other way
to get a 2g1-2y1-2y1 isosceles triangle. One quarter of
the rhombus is a b1-g1-2y1 right triangle.Two right
triangles assemble to form a b1-by-g1 rectangle,
where the ratio of the sides is �2�.

5. Substituting a gb1 for the g1 gives a square in this
plane, which appears in some of the Archimedean
solids.

6. The green plane is the plane of any rhombus
from the rhombic dodecahedron.

�2��2

�2��2

�3��2

13.3 Dihedral Angles
Challenge 

Q1 60 degrees

Q2 Half the above; 30 degrees

Q3 Either 30 or 150 degrees, depending on whether
one takes the larger or smaller angle.The two
possibilities will always be supplementary.

Q4 The angle between the normals is
supplementary to the dihedral angle.This is because
the angle between the normals, plus the angle
between the planes, plus 2 times 90 degrees, add up
to 360 degrees, as you can see by sighting along the
hinge.

Q5 The dihedral angle of the tetrahedron is 
180 – 2γ, approximately 70.5 degrees.

6. The icosahedron’s face normals are yellow lines,
three-fold symmetry axes.

Q6 The face normals are separated by 2α, so 
the dihedral angle is 180 – 2α, approximately 
138.2 degrees.

Q7 The dodecahedron’s face normals are red lines,
five-fold symmetry axes.The face normals are
separated by 2β, so the dihedral angle is 180 – 2β,
approximately 116.6 degrees.

Q8 The regular octahedron and the regular
tetrahedron have dihedral angles that are
supplementary.The tetrahedron’s is 180 – 2γ,
so the octahedron’s is 2γ.

Q9 The dihedral angles are 60, 72, 108, and 
120 degrees.To construct the normals, rest the
parallelepiped with a face flat on the table; you 
can insert a blue strut vertically into any of the top
four balls.The blue strut is a normal for the top 
and bottom face. Do this for each of two faces.
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tetrahedron

octahedron

dodecahedron

icosahedron

Dihedral anglesPolyhedra

≈ 70.5°

≈ 109.5°

≈ 116.6°

≈ 138.2°



Explorations 13

A. There is enough flexibility in the components to
make a triangular structure with those lengths.The
zomeballs have holes in approximately the directions
needed. However, these lengths are not the lengths
of the sides of a right triangle, because they do not
satisfy the Pythagorean theorem.A calculator shows
that (b3)

2 + (4b1)
2 is approximately 22.85(b1)

2 while
(5r1)

2 is approximately 22.61(b1)
2. So A2 + B2 ≠ C2,

and the struts must be slightly bent.

B. τk = Fk–1 + Fkτ. Proof:The base case of k = 1 is
evident. For the general case, we make the induction

hypothesis that τk = Fk–1 + Fkτ, and we need to
prove τk+1 = Fk + Fk+1τ. Using the hypothesis, we
write τk+1 = ττk = τ(Fk–1 + Fkτ). Using the 
τ2 = 1 + τ property, this can be expanded as 
Fk–1τ + Fkτ2 = Fk–1τ + Fk(1 + τ) = 
Fk + (Fk–1 + Fk)τ = Fk + Fk+1τ.The last step uses
the definition of the Fibonacci sequence.

C. You know β = arctan �
1
τ�, or equivalently,

tanβ = �
1
τ�. Using the formula for tan2x,

tan2β = 

= 

= = 2

So 2β = arctan2, and β = �
arct

2
an2
�.

D. Every blue angle shows up as an angle between
some pair of edges of both the dodecahedron and
the icosahedron.The edges in both cases correspond
to all the two-fold axes, every blue line.

E. For the b1-g2-g2 triangle, the two g2s want to be
in the same red hole, but you can verify the
construction by replacing one with the b2 legs of the
right triangle of which it is the hypotenuse. (The
blue legs are not in the plane of the original
triangle.) The apex angles are

2arcsin( )

where i is –1, 0, or 1, approximately 25.24, 41.41,
and 69.79 degrees.These three triangles are each 
in a different plane, but they are not planes
perpendicular to any of the struts.

τi
�
2�2�

2τ
�τ2 – 1

2�
1
τ�

�

1 – ��
1
τ��

2

2tanβ
�1 – tan2β

F. In the g1-g2-2b1 triangle that sits in the corners
of each octahedron face of the model, let A = 2,
B = τ�2�, and C = �2�. Solve for cosθ in the law
of cosines, and use a calculator to find that θ is
approximately 37.76 degrees.The same method can
be used to find any other green angles of interest,
after first building some triangle that involves the
angle.

14.1 Rhombic Zonohedra
Challenge Most of the polyhedra in this unit are
composed only of parallelograms.

1. The acute one has two vertices where three
acute angles meet.The obtuse one has two vertices
where three obtuse angles meet.

3. There are several choices.With yellow, you can
combine the two shapes of rhombus in several ways.
In blue, you can combine two or three shapes of
rhombus. Notice that opposite faces are always
equal, so six faces can include at most three rhombic
shapes.

Q1 A rhombic hexahedron that is not a
rhombohedron must have two shapes of rhombus.

5.

Five-fold polar zonohedron

Q2 20 faces, with two different shapes (except in
the case of the red version, where there is only one
shape)

14.2 Zones
Challenge All trips have the same length.

Q1 Answers will vary. See table in Question 4.

Q2 Because there are only two pairs of opposite
parallel sides

Q3 2(n – 1), since each other zone is crossed twice
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Q4

Q5 These n-zone zonohedra have n(n – 1)
parallelogram faces.

Q6 There are n zones, each with 2(n – 1) faces, so
you have a total of 2n(n – 1) faces. However, each
face has been counted twice, so there are n(n – 1)
faces altogether.

Q7 Six of the twelve faces would be removed and
the caps would join into a rhombohedron.

Q8 The red five-fold polar zonohedron

Q9 The rhombic dodecahedron of the second kind

Q10 The opposite sides of each face are parallel, so
zones can be stretched to produce a wide variety of
forms, for example, in architectural applications.

14.3 Stars

1. For the (yellow) rhombic dodecahedron, the
eight struts are arranged as if they were pointing
toward the vertices of a cube. For the (red) rhombic
dodecahedron of the second kind, the eight red
struts fill all the pentagonal holes of the zomeball
except for two opposite pairs of holes; they point
toward eight of the vertices of an icosahedron.

2. The parallelepiped will depend on the star
chosen.The figure shows one possibility.

Zome parallelepiped and corresponding star

3. Answers will vary.

Q1 The rhombic triacontahedron

Q2 There are 20 yellow holes, making ten
directions.With ten zones, 2(n – 1) gives us 18 faces
per zone, and n(n – 1) gives us 90 faces.All the faces
are quadrilaterals, so there are 4 times 90 divided by
2, or 180 edges.

Q3–Q4, 6. See table on page 237.

Explorations 14

A. a. Cube, regular octahedron

b. Regular icosahedron, regular dodecahedron

c. With all the diagonals, the result is a
compound of two dual Platonic polyhedra.

B. If the acute angle of the rhombus is less than 
60 degrees, the obtuse angle is greater than 
120 degrees. For such a rhombus, one cannot place
three obtuse angles together at a vertex to make the
obtuse rhombohedron, as the sum would exceed
360 degrees. Only the acute (pointy) rhombohedron
exists for rhombi with an angle less than 60 degrees.
Two rhombohedra exist for any rhombus with an
acute angle between 60 and 90 degrees.

C. There are four blue rhombus shapes possible,
with acute angles of 36, 60, 72, or 90 degrees.The
90-degree rhombus is a square, which leads to the
cube as one rhombohedron.With the 36-degree
angle, the only possibility is an acute rhombohedron
(because it is less than 60 degrees), and it is easily
constructed.The 60-degree rhombus also does not
allow an obtuse rhombohedron (because three 
120-degree angles meeting would total 360 degrees
exactly). In theory there is an acute rhombohedron
with 60-degree rhombi, and it is easy to make from
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Zonohedra

rhombohedra,
parallelepipeds

rhombic
dodecahedra

five-fold polar
zonohedra

rhombic
triacontahedron 

Number of zones
(edge directions)

3

4

5

6

Number
of faces

6

12

20

30



paper. However, when you try to make it with the
Zome System, you see that the zomeballs do not
allow placing three blue 60-degree angles together,
so it cannot be built.With the 72-degree rhombi, it
is easy to build the obtuse rhombohedron. However,
the acute 72-degree rhombohedron, like the 
60-degree one, though constructible in paper, is 
not Zome-constructible. In total, there are only
three blue Zome rhombohedra.

D. The process still works, making a polyhedron
that is flattened onto a plane, but struts have to be
bent slightly to cross each other.This is the
projection of a polar zonohedron onto the plane,
except that the two zomeball poles push against
each other, each wanting to be at the center.

E. There are five green three-fold polar zonohedra.
In the hole closer to the pole, there are three
different ways to insert the green strut. (The other
two are mirror images that give the same angles.) In
the hole closer to the equator, there are two ways.
(Two others lead to “flat zonohedra,” and one is a
mirror image.)

F. These do not have exact six-fold or ten-fold
symmetry, but are very close.With r1s and y1s, the
six-fold form is about the size and shape of a
football. It stands up nicely on a base of three b1s.
The ten-fold forms both have groups of coplanar
ribs, so groups of three faces are coplanar.

G. To count the number of regular skew n-gons,
you need to count only the number of ways of
making symmetric “umbrella ribs,” as in 
Exploration E.

H. The rhombohedra have 1 three-fold axis,
3 two-fold axes, and 3 mirror planes arranged as in
the triangular antiprism. (The special case of the
cube also has additional symmetry, of course.) The
rhombic dodecahedron has the same symmetry as
the cube.The rhombic dodecahedron of the second
type has the same symmetry as the golden brick:
3 mirrors and 3 two-fold axes.The five-fold polar
zonohedra have the same symmetry as a pentagonal
antiprism.The rhombic triacontahedron and
enneacontahedron have the same symmetry as the
icosahedron.

I. You can generate nonconvex zonohedra.

J. The figure is displayed at the end of the
Explorations.With green struts you can make a 
61-zone zonohedron.

15.1 Calculating Area
Challenge A parallelogram with sides b1 and y1,
and angle α, has area b1(y1)(sin α), or approximately
0.309b1

2. Or a b2-y1-y1 triangle with area 0.25b1
2.

Q1 Recognize that this is an isosceles triangle with
angles of 36, 36, and 108.The formula half the base
times height provides its area if you first choose one
side to be the base and then work out the height.
Because of the bilateral symmetry, it is convenient to
use b2 as the base, as the altitude bisects the obtuse
angle.The height is then (sin 36) b1, but what is that
explicitly? Apply the Pythagorean theorem to find
the height is

�1 – �
τ
4

2
��b1
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Q3

Truncated
octahedron

Truncated
cuboctahedron

Truncated
icosidodecahedron

Q4

6 zones

9 zones

15 zones

6

The star consists of the 
6 two-fold axes of the cube.

The star consists of the 
6 two-fold and 3 four-fold
axes of the cube.

The star is the blue starburst,
which is the 15 two-fold axes
of the icosahedron.

14.3, Q3–Q4, 6. ( from page 236)



Using the relation τ2 = 1 + τ, the area can be
simplified to 

τ b1
2

Q2 s = �1 + �2
τ

��b1

Area = ��1 + �2
τ

���b1��2
τ

��b�1��2
τ

��b1�1� – �2
τ

��b1�= τ b1
2

as above.

Q3 This isosceles triangle has angles 72, 72, and 36.
Choosing the short side as base, the height is 

�τ2 – �
1
4��b1.The semiperimeter is s = ��

1
2� + τ�b1. Both 

methods give the area as 

b1
2

Q4 Inserting two diagonals, the b1 pentagon is seen
to be composed of two triangles of the first type
above and one of the second type. So its area is

� + �b1
2

With some difficult manipulation, this can be
simpified to

b1
2

(There is no need to do so, but you can verify this
with a calculator if you wish.)

Q5 Inserting ten spokes from its center, the 
b1 decagon is seen to be composed of ten of the 
36-72-72 triangles. So its area is 

5��
3
4� + τ� b1

2

Q6 An r1 rhombus has diagonals b1 and b2, so it can
be dissected into four right triangles, each with legs
�
1
2�b1 and �

1
2�b2.Area = 4��

1
2����

1
2��b1�2

τ
�b1 = �2

τ
� b1

2.

Q7 The area is one half the product of the
diagonals.A rhombus with diagonals x and y can be
dissected into four right triangles, each with legs �

x
2�

and �2
y

�.Area = 4�
1
2� �

x
2� �2

y
� = �

x
2
y
�.

Q8 The skinny y1 rhombus has diagonals b0 and b2,
so its area is �

1
2� �

1
τ�(b1)(τ)(b1) = �

1
2�b1

2. (Although you
have no b0 struts, you can make a y2 rhombus, see it
has a b1 diagonal, and scale down.) The fatter y1

rhombus has diagonals b1 and �2�b1, so its area is
b1

2.The �2� diagonal (green strut) is determined
�2�
�2

�25 + 1�0�5��
��4

��
3
4� + τ�

�2
τ�3 – τ�
�4

��
3
4� + τ�

�2

�3 – τ�
�4

�3 – τ�
�4

by applying the Pythagorean theorem, remembering
that y1 = b1.

15.2 Scaling Area
Challenge There are two possible solutions: b1 by
y3, b2 by y2, and b3 by y1, or b1 by r3, b2 by r2, and b3

by r1.The key property in both cases is that as one
side is scaled up by τ, the other side is scaled down
by τ, leaving the product of the two sides
unchanged. In the first case, the area is τ2

b1y1; and in
the second case, it is τ2

b1r1. No red-yellow solution
exists because there is no red-yellow right angle.

Q1 a. No

b. It gets multiplied by 3.

Q2 a. No

b. It gets multiplied by 3.

Q3 a.Yes

b. It gets multiplied by 9.

Q4 The ratio of areas equals the square of the
scaling factor.

Q5 It is τ2 times as big.

Q6 9

Q7 A = �
1
2�bh

A´ = �
1
2�kb kh = k2(�

1
2�bh) = k2A

There is an analogous method using Heron’s
formula.

Q8 This is the 36-36-108 triangle with lengths
scaled up by τ, so you can take our answer from the
previous activity and scale the area up by τ2.The
area is

τ3
b1

2

Q9 First consider a b1 icosahedron. Sum 
20 b1 equilateral triangles. Using Heron’s 
formula (with s = �

3
2�b1), each triangle has area

��
3
2�b1 �

1
2�b�1 �

1
2�b1 �

1
2��b1� = b1

2

So the b1 icosahedron has total surface area 5�3�b1
2.

Our 3-meter icosahedron is scaled up by a linear
factor of 3�

me
b
t
1

ers
�, so its area is scaled up by a factor of

9�
m

b
et

1

e
2
r2

�, making its area 45�3� meter2. If you were
thinking of how much paint to buy, you would 

�3�
�4

�3 – τ�
�4

�3�
�2
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probably want an approximate numerical answer,
which a calculator shows is 77.9 meter2.

Q10 First consider a b1 dodecahedron. Composed of
12 b1 pentagons, it has area 3�25 + 1�0�5�� b1

2. (See
Question 4 of Activity 15.1.) Observing that the
distance between opposite edges is b3, you need to
scale linearly by

�
1 i

b
n
3

ch
�

which scales area by 

So the dodecahedron has area

�τ
3
4��25 � 1�0�5�� inch2

numerically 3.01 inch2.A sphere with radius �
1
2� has

area π inch2, so you can be confident you did not
make a large mistake in this calculation.

Explorations 15

A. Each of the 2n right triangles has one leg 
�2
e

� opposite an angle of �
18
n
0

�.The other leg is then

, and the triangle’s area is

The n-gon’s area is then

B. The figure below shows several rhombic
dissections of the regular 10-gon. Every dissecting
edge inside the 10-gon will be parallel to one of the
10-gon edges, because opposite edges of rhombi are
parallel. So the rhombi angles must be the same as
the angle between the edges of the 10-gon:
144 degrees; its supplement, 36 degrees; the angle
remaining when 36 is subtracted from 144,
108 degrees; and its supplement, 72 degrees.Those
are the only angles found in the rhombi. One
method of proving that there must be five of each
involves areas. Let x and y be their areas. If there 
are n of one and m of the other, then the area of the
10-gon must be nx + my.You know m = n = 5
gives solutions. Suppose there are other solutions,

ne
2

�
4tan�

18
n
0

�

e2

�
8tan�

18
n
0

�

e
�
2tan�

18
n
0

�

1 inch2
�
(τ2b1)

2

with i of one and j of the other, then ix + jy gives
the same area, so nx + my = ix + jy.You can solve 
this for the ratio �

x
y� = �

(
(
j
n
–
–
m
i)
)

�.The right side is a ratio
of integers, so it is rational. But the left side, �

x
y�, is

irrational, which is a contradiction, so our
supposition that there can be solutions other than 5
and 5 is incorrect.To see why �

x
y� is irrational, notice

that each rhombus shape can be dissected into two
of the isosceles triangles whose areas you
determined in Question 3 of Activity 15.1.

Three rhombic dissections 
of the regular decagon

C. The intersection of the sphere and a midscribed
polyhedron is a set of circles, one inscribed in each
of the polyhedron’s faces.The interiors of the circles
lie inside the sphere. In Question 10 of Activity
15.2, you saw that the area of a dodecahedron
midscribed to a sphere 1 inch in diameter is
approximately 3.01 inch2, which is about 4 percent
less than the area of the sphere.You also saw (in
Question 9 of 15.2) that a b1 icosahedron has area
5�3�b1

2. Its edge-to-edge diameter is b2. Scaling by

��1 τ
in
b1

ch
��

2

shows that a 1-inch diameter icosahedron has an
area of 5�

�

τ2
3�� inch2, which is approximately 3.31 inch2,

over 5 percent more than the area of the sphere.

16.1 Filling Space

Q1 Every edge is surrounded by three rhombic
dodecahedra.

Q2 120 degrees

4. The elongated rhombic dodecahedron looks like
a rhombic dodecahedron with four additional edges
and four faces stretched into hexagons.

Q3 There are two types of edges.The new,
vertical edges are surrounded by four elongated
dodecahedra.Three elongated dodecahedra surround
the slanted edges.Where four yellow edges meet, a
pocket is formed into which a four-fold vertex of
the next layer fits.
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Q4 90 degrees at the vertical edges, 120 degrees at
the slanted edges.

Q5 All edges are equivalent.A walk around an edge
visits three truncated octahedra, passing through two
hexagons and one square.

Q6 The octahedron’s dihedral angle is 2γ, which
remains unchanged as the hexagon-hexagon angle in
the truncated octahedron. In the 360 degrees around
an edge of the space structure, there is one of these
angles and two of the other (square-hexagon)
dihedral angle. So its value is

�
360

2
– 2γ
� = 180 – γ

7. a. Take one face of the cube and join its 
four vertices to the point at the center of the 
cube, to define a pyramid. Six of these make a 
cube, and copies of that fill space.

b. Either do as above with any rhombohedron,
such as a pointy b2 rhombohedron (it will not be a
right pyramid), or take one face of the rhombic
dodecahedron and join its four vertices to a point at
the center of the rhombic dodecahedron.Twelve of
these make a rhombic dodecahedron, and copies of
that fill space.

c. Take a square or rhombic dodecahedron
pyramid above and slice it in half, cutting the base
into two triangles.There are two ways of doing this
with the rhombic dodecahedron pyramid, taking
either the long or short diagonal.

d. Pick one of the square or rhombic pyramids
above and put two back-to-back.

e. There are many possibilities. For example,
assemble two of the six pyramids that form a cube
( joining a triangle to a triangle). Or assemble three
of them together, either in a U shape or each in
contact with the other two.

Q7 Circling any edge, you pass through an
octahedron, a tetrahedron, another octahedron, and
another tetrahedron.

Q8 Octahedron: 2γ, approximately 109.5 degrees.
Tetrahedron: 180 – 2γ, approximately 70.5 degrees.

16.2 Packing Spheres
Challenge Cannonball stacks (where each touches
12 neighbors) are denser than balls stacked in a
cubical array (where each touches 6 neighbors).

Q1 Each ball touches 12 neighbors, 4 in its layer,
4 in the layer above, and 4 in the layer below.

Q2 Four planes of triangular arrangement are easy
to see, being parallel to the pyramid’s triangular
sides.Two other planes of squares are less obvious,
but notice that the bottom center ball, the top ball,
and two of the balls of the middle layer together
form a square in a vertical plane.There are two such
planes, depending on which two balls of the middle
layer are chosen.The three planes of squares are
mutually perpendicular.

Q3 Again, each ball touches 12 neighbors, now 6 
in its layer, 3 in the layer above, and 3 in the layer
below.

Q4 The triangles in horizontal planes are obvious.
Three other planes of triangular arrangement are
also easy to see, being parallel to the pyramid’s
triangular sides.Three planes of squares are less
obvious, but take off the top ball, one of the three
under it, and one under that, to see two squares in a
plane.There are three such planes, depending on
which ball of the second layer is chosen.

Q5 If replicated infinitely, the two stacks of
cannonballs have the identical structure; they are 
just oriented differently with respect to gravity 
and sliced along different planes.

Q6 A cuboctahedron

Q7 They are the vertices of an isomer of the
cuboctahedron.The polyhedron is formed by
cutting a cuboctahedron along a hexagon equator
and putting the halves back together with a 
60-degree twist so that along the equator squares
border squares and triangles border triangles.

16.3 The FCC Lattice
Challenge This gives the face-centered-cubic
sphere packing.

Q1 The two structures have the same edges.You are
just visually grouping an octahedron with four
surrounding tetrahedra into a stella octangula.

Q2 The second layer of squares is the dual
tessellation to the first. Looking down, you see how
each edge of one crosses an edge of the other. In
addition to square pyramids, there are tetrahedra.
Crossed pairs of edges in the two tessellations
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contribute two edges to each tetrahedron—one in
each plane.The other four edges come from square
pyramids.

Q3 Two square pyramids join to form an
octahedron.The result is the space structure of
alternating octahedra and tetrahedra (compressed
slightly, to be not regular).

5. The “squares” in vertical planes are compressed
into yellow rhombi.

Q4 Octahedra and tetrahedra

Explorations 16

A. The result is again alternating tetrahedra and
octahedra, but possibly very stretched or compressed
along a three-fold axis.

B. An octahedron has twice as many faces as a
tetrahedron, and each face of the space structure
borders one of each, so there must be twice as many
tetrahedra.The same conclusion results from the fact
that an octahedron has twice as many edges as a
tetrahedron and each edge of the space structure
contacts two of each.A third method is to count
that each vertex of the space structure is shared by
six octahedra and eight tetrahedra.The octahedra
have six vertices, so with n octahedra you count 6n
vertices, but each one was counted six times; so
correct for the overcount by dividing by six, finding
that there is one vertex per octahedron on average.
The tetrahedra have four vertices, so there is only
one-half vertex per tetrahedron on average.

C. The concave dodecahedron and the regular
dodecahedron can fill space together. Imagine cubes
filling space colored alternately black and white. Put
a dodecahedron around all the white ones, and then
take six roof shapes away from the black ones.

D. Use four 5-gons, two 4-gons, and eight 3-gons,
all regular, in a blue structure.The squares are
surrounded by triangles but at two different dihedral
angles.

E. See Robert Williams, The Geometrical Foundation
of Natural Structure, for pictures of these structures.

F. This structure can be formed in a blue cube,
using alternating vertices of the cube. It can be seen
as four different planes of skew hexagons. It is half
the edges of the packing of rhombic dodecahedra. It
can also be seen as putting four yellow struts inside

alternating tetrahedra in the tetrahedron and
octahedron structure.

G. The regular dodecahedron’s dihedral angle is
approximately 116.6 degrees, not 120. So, if three
regular dodecahedra meet at a common edge, there
will be a small wedge of space unfilled.This gap can
be closed by a slight rotation through the fourth
dimension, as seen in Activity 21.3!

H. In each case, the pieces fit together as in the
space structure of alternating tetrahedra and
octahedra. Each of the shapes can be found among
the edges of the structure.

I. Each low pyramid is one fourth of a regular
tetrahedron.When the g1-y1-y1 isosceles triangles are
joined with others, regular tetrahedra are formed
that alternate with the truncated tetrahedra. So this
polyhedron originates with a structure of alternating
tetrahedra and truncated tetrahedra, then grows.The
tetrahedra are divided into pyramids that meet at its
center, and the pieces are attached to the other
polyhedra they touch.Applying this same operation
to the structure of alternating octahedra and
tetrahedra gives the rhombic dodecahedron if the
tetrahedra are divided or gives the cube if the
octahedra are divided.

J. The space structure consists of pyramids (from
the polygons) and tetrahedra (from the crossing
edges).The back-to-back pyramids can be joined
into dipyramids.

17.1 Prisms and Scaling
Challenge If you find one smaller, let us know.
Make a b1 rhombus in the red plane, having a 36-
degree vertex angle. Inserting a red strut
perpendicular to the rhombus makes it easy to see
that there are 10 yellow holes in the zomeballs,
which are only a small angle from the red plane.
Pick any one of those 10 directions and place a y1 in
each ball, to locate the other four vertices. From
Unit 13, that red-yellow angle is 90 – α + β (or its
supplement 90 + α – β), so the angle between the
yellow strut and the red plane is β – α.The height
of the prism is sin(β – α)y1.
Smaller one by Bob Mead:A low slanted triangular
prism built on a b1-y1-y1 triangle, using either four
b1s or four y1s for the side edges.The height is the
same in either case, and the volume is 0.0773b1

3.
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1. The golden brick has edges b1, b2, and b3.Any
pair can form the base, and the third becomes the
height. Its volume is b1b2b3 = τ3

b1
3.This is the same

volume as a b2 cube.

Q1–Q2 In models with edge 2r1, the acute
rhombohedron has height h = b2 and the obtuse
rhombohedron has h = b1. Because they have the
same base, this shows the ratio of their volumes is τ.
The r1 rhombohedra have half these heights,
respectively.You saw in Unit 15 that the base has 
area �2

τ
�b1

2, so the volumes are �
τ
4

2
�b1

3 and �4
τ

�b1
3,

respectively.Thus the ratio of their volumes is τ.

Q3 The r1 rhombic dodecahedron is the sum of two
acute and two obtuse rhombohedra, so its volume is 

2(�
τ
4

2
�)b1

3 + 2(�4
τ

�)b1
3 = (τ + 1)�2

τ
� b1

3 = �2
τ3

�b1
3

which is half a b2 cube.

Q4 a. 4 or 22

b. 8 or 23

Q5 a. For the smaller prism, A = 2(lw + wh + hl ).
For the larger prism,
A´ = 2(2l · 2w + 2w · 2h + 2h · 2l )

= 4 · 2(lw + wh + hl ) = 4A.

b. For the smaller prism, V = lwh.
For the larger prism, V´ = 2l · 2w · 2h = 8lwh = 8V.

Q6 a. Smaller: A = 2(lw + wh + hl )
Larger: A´ = 2(kl · kw + kw · kh + kh · kl ) = 
k2 · 2(lw + wh + hl ) = k2A

b. Smaller: V = lwh
Larger: V ´ = kl · kw · kh = k3lwh = k3V

Q7 The r3 rhombic dodecahedron is scaled up by a
linear dimension of τ2, therefore its volume is scaled
by (τ2)3, which is τ6, making its volume �

τ
2

9
�b1

3.

Q8 This is numerically about 38 b1 cubes,
equivalent to a b1-by-b1-by-38 b1 prism.

17.2 Pyramids and Beyond
Challenge Make a b2 decagon, and extend every
other edge with b1 struts in both directions.They
connect to form a pentagon. Radial struts that locate
the center of the decagon also locate the center of
the pentagon.

Q1 The only symmetric pyramid on a b1 square
base has y1 struts for its slanted edges. It has 
height h = �

1
2�b1, which can be seen either from a

double-scale model or by noticing that two of these
pyramids facing in from opposite sides of a cube will
meet at the cube’s center.Applying the formula 
one-third base times height gives the volume as
�
1
6�b1

3.This result can be seen more directly by
noticing that a b1 cube can be dissected into six of
these pyramids meeting at the cube’s center, so 
each has one sixth the cube’s volume.

Q2 Since the rhombic dodecahedron adds 
6 · (�

1
6�)b1

3 to a b1 cube, its total volume is 2b1
3.

Q3 A 3b1 equilateral triangle allows you to add
interior b1 struts to locate its center. Building the 
3r1 slanting edges, you can determine from the
model that h = y3. Scaling down by a factor of three,

the b1 pyramid has h = �
y
3
3� = b1.The area of a 

b1 equilateral triangle is b1
2. So the pyramid

volume is �
1
3� b1

2
b1 = �2

τ
4

2

�b1
3.

Q4 A b1 icosahedron can be dissected into 20 of the
above pyramids (recall the red starburst), so its 
volume is �

5
6
τ2
�b1

3. Scaling b1 up to 1 meter, an
icosahedron with edge 1 meter has volume 

�
5
6
τ2
� meter3, numerically 2.18 meter3.

Q5 A dodecahedron can be dissected into 
12 pentagonal pyramids that meet at the
dodecahedron’s center.This is illustrated by the
yellow starburst method of its construction. For a 
b1 dodecahedron, the pentagonal pyramid has a 
b1 base and y2 slanting edges.

Q6 To find the pyramid’s height, you first need to
locate a pentagon’s center.This was solved in the
Challenge.That pentagon has edge 
b1 + b2 + b1 = (2 + τ)b1, so the similarly scaled
yellow edges have length (2 + τ)y2 = y2 + y3 + y2.
Making a model shows that 

h = r3 + r2 = (τ + τ2)r1 = (1 + 2τ)r1

= (1 + 2τ) b1

where the last step uses the fact, shown in Unit 13,

that r1 = b1.To scale this down to the b1 size
�2 + τ�
�2

�2 + τ�
�2

τ2�3�
�6

�3�
�4

�3�
�4

τ2�3�
�6
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base, linear dimensions are divided by (2 + τ), and 

h = (1 + 2τ) b1

Recalling, from Unit 15, that the b1 pentagon has 
area

b1
2

you multiply one-third base times height to obtain a
rather messy formula for the pyramid’s volume:

b1
3

With work, this can be simplified analytically to 

b1
3

Q7 Sum 12 of the above pyramids to get 

b1
3

This can also be expressed as

b1
3

Numerically, it is 7.66 b1
3.

Explorations 17

A. Volume = 5��x3. Numerically, this is 

also 7.66x3.

B. If A3 shrinks to a point, the shape is a pyramid
and A2 is the cross section halfway up. A2 is then
similar to A1, but with half the linear dimensions, so 
it is a quarter of the area.The formula�

(A1 + 4A
6

2 + A3)h�,
after substituting A3 = 0 and A2 = �

A
4

1�, reduces to 
�
A
3
1h�, the volume of a pyramid.

C. A thirtieth of an r1 rhombic triacontahedron
(RT) is a pyramid with r2 and y2 slanting edges. In
double scale, you see a 2r1 version has height b3.
The r1 pyramid has base area �2

τ
�b1

2, height �
τ
2

2
�b1,

and volume �1
1
2�τ3

b1
3.Thirty of them give the 

total RT volume as 5�
τ
2

3

� b1
3. Summing the 

20 rhombohedra gives the same result:

10�
τ
4

2

�b1
3 + 10 �4

τ
� b1

3 = 5�
τ
2

3

� b1
3

47 + 21�5�
��40

�5�τ4

�2

15 + 7�5�
��4

15 + 7�5�
��48

(�25 + 1�0�5��)(1 + 2τ)(�2 + τ�)
����24(2 + τ)

�25 +10��5��
��4

�2 + τ�
�2(2 + τ)

18.1 Zonish Big Domes

Q1 It takes n – 3 diagonals to triangulate an n-gon.
The more sides a polygon has, the more choices
there are as to how to arrange these diagonals.

Q2 There are 12 pentagons and 30 irregular
hexagons.The form can be obtained by 
truncating just the five-fold vertices of the 
rhombic triacontahedron. Each hexagon is the
central part of a red rhombus, after its two acute
vertices are truncated.

Explorations 18

B. The result has 12 pentagons, 60 rectangles,
60 rhombi, and 30 skinny hexagons.

C. Between the blue triangles and pentagons will
be yellow zones consisting of irregular hexagons and
skinny rhombi. In size y3, you can brace the rhombi
with b2s as their short diagonals.

D. The result has 8 triangles, 30 rectangles, and 
12 fat yellow rhombi (arranged as in the rhombic
dodecahedron). It appears in two books by Peter
Pearce: Structure in Nature Is a Strategy for Design
(p. 49) and Polyhedra Primer (p. 50), but not with 
this method of construction.

19.1 Vertex Coordinates
Challenge The three adjacent nodes are at distance
2b1.After that, the next closest six nodes are at
distance 2b2 (the diagonal of a 2b1 pentagon).To
find the distance to the next six nodes, visualize the
2b2 cube in the 2b1 dodecahedron.You can see this
is the distance of a diagonal of a face of that cube, so
it is 2�2�b2 = 2�2�τb1, because the diagonal of a
square is �2� times its edge. Finally, there are three
further nodes at distance 2b3 and one node—the
opposite vertex—at distance 4y2. Cartesian
coordinates provide another approach to this
problem in Questions 9 and 10.

Q1 The coordinates of the vertices are (1, 1, 1),
(1, 1, –1), (1, –1, 1), (1, –1, –1), (–1, 1, 1), (–1, 1, –1),
(–1, –1, 1), and (–1, –1, –1).

Q2 We could scale down to half the size and obtain
an edge length of 1 if the coordinates were 

(±�
1
2�, ±�

1
2�, ±�

1
2�).
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Q3 One solution is (1, 1, 1), (1, –1, –1), (–1, 1, –1),
(–1, –1, 1), where the +1 always appears an odd
number of times.The other solution is the set of
cube vertices where +1 appears an even number of
times.

Q4 It is a distance b1 in the negative x-direction. It
is at a position 0 along the y-axis. It is a distance b2

in the positive z-direction. So its coordinates might
be written (–b1, 0, b2).

Q5 (–1, 0, τ) with units b1 understood

Q6 The icosahedron’s 12 vertices are naturally
grouped into three sets of four: (±1, 0, ±τ),
(0, ±τ, ±1), (±τ, ±1, 0). Note how the components
shift over one position.

Q7 The first edge has endpoints (τ, 1, 0) and 
(τ, –1, 0).The length of the edge is 
�(τ – τ)�2 + (1�– (–1))�2 + (0�– 0)2� = 2.This is two
units of b1, the length we chose for the model.The
length of the edge from (1, 0, τ) to (0, τ, 1) should
work out to be the same. It is 

�(1 – 0)�2 + (0�– τ)2 +� (τ – 1�)2�

= �1 + τ2� + (τ2�– 2τ +� 1)�

= �2 – 2τ� + 2τ2�

= �2(1 +�(τ2 – τ�))� = �4� = 2, again.

Q8 In this position, the vertex coordinates are 
(±1, ±τ, 0), (±τ, 0, ±1), and (0, ±1, ±τ).

Q9 Assuming units of b1 again, the coordinates of
the dodecahedron vertices are (±τ2, 0, ±1),
(±1, ±τ2, 0), (0, ±1, ±τ2), and (±τ, ±τ, ±τ).The last
group is the eight vertices of one of the cubes in the
dodecahedron.

Q10 The distances are those given in the answer to
the Challenge.

19.2 Point Operations
Challenge Five examples are given below: the
cuboctahedron (3, 4, 3, 4) is Question 5; the
icosidodecahedron (3, 5, 3, 5) is Question 6; the
truncated icosahedron (5, 6, 6) is Question 11; the
truncated tetrahedron (3, 6, 6) is Question 12; the
truncated cube (3, 8, 8) is Exploration G.

Q1 �3�
Q2 For the eight points of the form 
p = (±τ, ±τ, ±τ), |p| = �τ2 + τ�2 + τ2� = �3�τ. For
the twelve that are permutations of p = (0, ±1, ±τ2),
|p| = �1 + τ4� = �1 + 2�+ 3τ� = �3(1 +�τ)� = 
�3�τ. (Use the τ manipulations from Unit 13.) The
changes in order or sign of the components do 
not affect the squared sum. So every vertex has
magnitude �3�τ, which is 2y2 in units of b1, which
we know is correct from a yellow starburst.

Q3 For vertices, p, of the 2b1 icosahedron,
|p| = |(±1, 0, ±τ)| = �12 + 0�2 + τ2� = 

�1 + τ2� = �2 + τ�. Scaling by will give 

points a distance 1 from the origin, so four of the
vertices are

� , 0, �
The others come from rotating the three coordinates
as in Question 6 of Activity 19.1.

1. It is a 2r1 rhombus.The top edge of the
icosahedron is its short diagonal.

Q4 Directly above the origin, halfway to the point
p1 + p2, is the center of the red rhombus—the
midpoint of the segment connecting p1 and p2.

Q5 �
1
2�( p1 + p2) = �

1
2�(2, 2, 0) = (1, 1, 0)

Q6 The 12 vertices are (±1, ±1, 0), (±1, 0, ±1), and
(0, ±1, ±1).

Q7 There are six icosidodecahedron vertices on the
axes: (±τ, 0, 0), (0, ±τ, 0), and (0, 0, ±τ). (These are
the vertices of a regular octahedron.) A typical 
off-axis midpoint is ��

τ
2

2
�, �

1
2�, �2

τ
��, which is the midpoint 

of the segment joining (1, 0, τ) and (τ, 1, 0).The 
24 off-axis vertices come in three groups of eight 
by changing signs and shifting the coordinates:

��
±
2
τ2
�, �

±
2
1
�, �

±
2
τ
��, ��

±
2
1
�, �

±
2
τ
�, �

±
2
τ2
��, and ��

±
2
τ
�, �

±
2
τ2
�, �

±
2
1
��. Each

group of eight defines a golden brick.

Q8 (1, 0, 0)

Q9 The six vertices are (±1, 0, 0), (0, ±1, 0), and 
(0, 0, ±1).

Q10 The first face has vertices (τ, 1, 0), (τ, –1, 0),
and (1, 0, τ).The face center is their average,

��1 +
3

2τ
�, 0, �3

τ
��. Note that it is on the xz-plane.The

second face has vertices (τ, 1, 0), (1, 0, τ), and 

±τ
�
�2 + τ�

±1
�
�2 + τ�

1
�
�2 + τ�
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(0, τ, 1).The center is their average, ��
τ
3

2

�, �
τ
3

2

�, �
τ
3

2

��. Note
that it is on the line x = y = z.

Q11 �
3
τ�

Q12 p1 = (–1, 0, τ) and p2 = (+1, 0, τ), so the points

that trisect it are �
1
3�p1 + �

2
3�p2 = �+�

1
3�, 0, τ� and 

�
1
3�p2 + �

2
3�p1 = �– �

1
3�, 0, τ�.

Q13 The tetrahedron vertices in the 2b1 cube are 
(1, 1, 1), (1, –1, –1), (–1, 1, –1), and (–1, –1, 1).The 

trisection points are ��
1
3�, �

1
3�, 1�, �– �

1
3�, – �

1
3�, 1�, �–1, �

1
3�, – �

1
3��,

and so on, that is, the 12 permutations of 

�±1, ±�
1
3�, ±�

1
3��, which have an odd number of positive 

entries. For the 3b1 cube, scale by �
3
2�.

Explorations 19

A. Rotating about the z-axis, the new coordinates
are (±�2�, 0, ±1) and (0, ±�2�, ±1).

B. It is the line x = y = z, since points of the form
(x, x, x) remain fixed by the operation.

C. The result is a dodecahedron with a pyramid of
equilateral triangles inside each face and an inner
icosahedron. Removing the edges of the icosahedron
leaves the concave equilateral deltahedron seen in
Exploration D in Unit 2. Removing instead the
outer dodecahedron leaves the great stellated
dodecahedron to be seen again in Unit 20.

D. The result has one edge and one diagonal in
each face. It rests on any of the pentagonal sides.
There are two ways to start, that is, (±1, ±τ2, 0) or
(±τ2, ±1, 0) for the first rectangle. In one case the
dodecahedron can be completed; in the other it
can’t.

E. Let four vertices be O = (0, 0, 0),
A = (x1, y1, z1), B = (x2, y2, z2), and C = (x3, y3, z3).
The other four vertices are A + B, A + C, B + C,
and A + B + C. The sum of the squares of the
lengths of the edges is 4(|A|2 + |B|2 + |C|2) = 
4(x1

2 + x2
2 + x3

2 + y1
2 + y2

2 + y3
2 + z1

2 + z2
2 + 

z3
2).The sum of the squares of the lengths of the

diagonals is |A + B + C|2 + |A + B – C|2 + 
|A – B + C|2 + |–A + B + C|2, which when
expressed in terms of the x’s, y’s, and z’s simplifies to
the same expression.

F. This depends on available software.

G. The one-third points produce regular hexagons
from equilateral triangles but do not produce regular
octagons from squares. Consider the ruler-and-
compass construction of the regular octagon. Draw
the diagonals in a square.A compass centered on a
vertex with half the diagonal as radius marks two of
the octagon’s vertices on the squares. From this, the
correct weighting is ��2

2��p1 + �1 – ��2
2���p2.The 24 

vertices are the permutations of (±1, ±1, ±�2� – 1).

H. One edge has endpoints p = �±�
1
3�, 0, τ�.The edge

length is �
2
3� and the sphere radius is |p| = ��

1
9� + τ2�.

The ratio of radius to edge is approximately 2.47.

20.1 Self-Intersecting Polygons

1. Start with a pentagon of five b1s. Extend each
side in both directions by adding ten b2s. Five more
balls connect everything together.

Q1 Five edges, five vertices

Q2 Two concentric pentagons cross through each
other. Each has edge b1 + b2 + b1. Each edge
intersects two edges of the other pentagon.

Q3 The result is a self-intersecting regular 10-gon.

Q4

�
1
3
0
�-gon

Q5

�
7
2

�-gon �
7
3

�-gon

Q6 A �
7
1�-gon is the standard regular 7-gon.Any 

�1
n

�-gon is the same as a standard regular n-gon.

Q7 A pentagram is a �
5
2�-gon.
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Q8 A �
1
7
0
�-gon is the same as a �

1
3
0
�-gon, drawn in

reverse.

Q9 If m + k = n, then an �m
n

�-gon is identical to an 
�
n
k�-gon, because going around m hops in one
direction is equivalent to going around k hops in the
other direction. Equivalently, an �m

n
�-gon is identical to

an �(n –
n

m)�-gon.

Q10 Using the preceding procedure to draw an 
�m
n

�-gon where m divides evenly into n, or where n
and m have a common factor, some of the n vertices
will not be visited.

Q11 180 – �
36

n
0m
�.This follows from the fact that a

turtle walking along the sides would make n turns,
adding up to a total turning of m full turns. Since
the total turning is 360m, each turn is �

36
n
0m
�, and the

interior angle is the supplement of that.

20.2 The Kepler-Poinsot Polyhedra
Challenge A prism based on the �

1
3
0
�-gon is one

answer.The Kepler-Poinsot polyhedra are others.

Q1 There are 12 regular pentagons, 2 per edge,
5 per vertex.There are still 30 edges.

2. In type (b), exterior lines of intersection, there is a
triangular pyramid constructed inside each of the
icosahedron’s faces, using b2 struts. In type (c), all
lines of intersection, there is a complete pentagram
inside each of the 12 pentagons.

Q2 V = 12, F = 12, and E = 30; so V + F ≠ E + 2.
Without even adding, you might notice that V and
E are the same as for the icosahedron, but F changes
from 20 to 12, so the equality cannot still hold.The
great dodecahedron does not satisfy the conditions
of Euler’s theorem; it is not a convex, simply
connected polyhedron.

Q3 It can be seen as a self-intersecting polyhedron
with 12 pentagram faces, 30 edges, and 12 vertices.
The b2 + b1 + b2 edges are of length b4, and two
faces meet along each edge as required.

Q4 At each vertex of the small stellated
dodecahedron, any two nonadjacent edges meet at a
60-degree angle. Examining the model shows that
there are 20 equilateral triangles, each centered on a
three-fold axis of symmetry.Two triangular faces
meet per edge.There are still 12 vertices and 
30 edges, as in the small stellated dodecahedron.

Q5 There are 12 pentagrams, meeting 3 to a vertex.
There are 20 vertices and 30 edges.

Q6 The number of faces of X equals the number of
vertices of Y and vice versa.

Q7 The great dodecahedron (V = 12, F = 12) and
small stellated dodecahedron (V = 12, F = 12) are a
dual pair.The great icosahedron (V = 12, F = 20)
and great stellated dodecahedron (V = 20, F = 12)
are another dual pair.

Q8 The small stellated dodecahedron is ��
5
2�, 5	, since

five pentagrams meet at each vertex.The great 
stellated dodecahedron is ��

5
2�, 3	, since three

pentagrams meet at each vertex.

Q9 The great dodecahedron is �5, �
5
2�	, since it is dual 

to the small stellated dodecahedron, ��
5
2�, 5	.

The great icosahedron is �3, �
5
2�	, since it is dual to

the great stellated dodecahedron, ��
5
2�, 3	.

20.3 Uniform Polyhedra
Challenge

A uniform 6-gon

Q1 Only the outer six balls correspond to vertices;
the other balls are just for the construction.The
edges may be several struts in length.

Q2 The regular 10-gons found at the equators of
the icosidodecahedron are one type of face in our
new self-intersecting polyhedra. Each edge is part of
exactly one 10-gon, so we need to find another
polygon to be the second polygon at each edge.
One way to do this is to keep all the triangles of the
icosidodecahedron, which gives us a polyhedron 
(3, 10, 3, 10) with six 10-gons and twenty 3-gons.
In the pentagonal holes, one can see parts of the 
10-gons. Notice that the two 10-gons that 
meet at a vertex cross each other, so when you go
around a vertex, you actually make a figure 8.
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Q3 For the second self-intersecting polyhedron, we
use the 10-gons and take just the pentagons of the
icosidodecahedron.This gives (5, 10, 5, 10) with 
six 10-gons and twelve 5-gons. Parts of the 10-gons
can be seen through the triangular holes. Note that
this polyhedron does not have a single inside but,
rather, can be seen as a combination of pyramids,
which share a common apex.

Q4 Regular 10-gons are found among the edges of
the rhombicosidodecahedron.They are one type of
face in our new self-intersecting polyhedra. Notice
that each rhombicosidodecahedron edge is part of
exactly one 10-gon, so we need to find another
polygon to be the second polygon at each edge.
One way to do this is to keep all the squares of the
rhombicosidodecahedron, which gives us a
polyhedron (4, 10, 4, 10) consisting of twelve 
10-gons and thirty 4-gons. Parts of the 10-gons 
can be seen through the triangular and pentagonal
holes. For the second self-intersecting polyhedron,
we keep the triangles and pentagons of the
rhombicosidodecahedron, but throw out the 
squares.This gives (3, 10, 5, 10) with twelve 
10-gons, twelve 5-gons, and twenty 3-gons. Parts of
the 10-gons can be seen through the square holes.

Explorations 20

A. A yellow one starts with a regular skew 10-gon
from y1s in which each angle is the same as the
acute angle of a fat yellow rhombus. It is extended
with y2s in each direction to make a taller, narrower
crown. Each is the zig-zag of a pentagrammatic
crossed antiprism with isosceles side faces.

B. The compound of the small stellated
dodecahedron with the great dodecahedron starts as
the compound of the 2b1 dodecahedron with the
2b2 icosahedron (see Unit 9). Each dodecahedron
face is then elevated with 2b2 slanting edges to make
the small stellated dodecahedron.The compound of
the great stellated dodecahedron with the great
icosahedron extends this by adding triangular
pyramids of length 2b3 to all the icosahedron faces.
However, in order to cross the midpoints of the
pentagonal pyramids, the 2b3 lengths are constructed
as b1 + b2 + b3.

C. The compound has the same edges as uniform
polyhedra with vertices of types (3, 5, 3, 5, 3, 5),

�3, �
5
2�, 3, �

5
2�, 3, �

5
2��, and �5, �

5
2�, 5, �

5
2�, 5, �

5
2��.

D. a. The result is ��
5
2�, 10, 10� with twelve 

pentagrams and twelve 10-gons.

b. The result is ��
5
2�, 5, �

5
2�, 5� with twelve 

pentagrams and twelve pentagons. It has the 
same vertices as the icosidodecahedron.

c. It has the vertices of the icosidodecahedron,
but with six equatorial �

1
3
0
�-gons rather than 10-gons.

E. The octahedron has three square equators. If 
we make a polyhedron using those squares and
alternating triangular faces of the octahedron, we
have a polyhedron of type (3, 4, 3, 4) with three
squares and four triangles.The squares pass through
each other (and the center of the polyhedron), so it
is not as peculiar as the Möbius strip, but tracing
over the surface like an ant, you can verify that it has
only one side.

F. The figure shows how the ten arrowhead faces
connect. Notice there are two per edge, as there
should be.

Pentagrammatic concave trapezohedron

G. The result is the same as building a 
b1 icosidodecahedron, erecting two pyramids (with
slanting edges of y1 and y2) on each pentagon, then
removing the b1s.There are 12 five-fold vertices 
and 12 vertices, so it is dual to the �5, �

5
2�, 5, �

5
2��.

It can also be seen as a stellation of the rhombic
triacontahedron. (See Activity 22.1 for the
definitions of stellation.)

21.1 Hypercubes
Challenge One way to do this is to start with a
cube, then add a zone in a red or yellow direction.
See Question 9.
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Q1 Each is double the previous (because we
connected two copies of the previous hypercube).
Generally, we expect 2n vertices in an n-dimensional
hypercube.

Q2 The 4D hypercube should have 24 = 16
vertices.

Q3 Each hypercube has double the number of edges
in the previous (because we connected two copies
of the previous hypercube) plus the number of
vertices in the previous (because we added a new
edge for each vertex of the previous hypercube). So
the 4D hypercube should have 2(12) + 8 = 32
edges. Generally, from the fact that each vertex
touches n edges, there are n�

2
2
n
� = n(2n–1) edges.

Q4 The figure follows the pattern, with 16 vertices
and 32 edges.There are two copies of the 3D cube,
and their corresponding vertices are connected with
yellow struts. Since there is no new direction that is
perpendicular to the previous three, we use inward or
outward as the new direction.

Q5 Like the first drawing, the inner and outer
components are undistorted and different sizes, but
angles are distorted in the connecting components.
It is centered on the center of a cube (the hypercube
one dimension down) just as the first cube drawing
is centered on the center of a square.

Q6 The figure contains 16 vertices and 32 edges, as
expected. Hold a three-fold axis vertical to see that
there are two copies of a rhombohedron, one high
and one low, with their corresponding vertices
connected by vertical struts.

Q7 Like the second drawing, squares appear as
rhombi and the model is centered on two opposite
vertices that are slightly displaced, both trying to be
at the center.

Q8 The two components of lower dimension are
undistorted and the same size, but the connecting
lines are not perpendicular to the cubes.

Q9 The outer shell of the model answers the
Challenge.

Q10 A 4D hypercube is bounded by eight cubes.
The eight cubes can be found in all three models,
although most are distorted.

Q11 Model 5 shows the eight component cubes of
the 4D hypercube, each undistorted. But it has been

separated, along faces, which need to be rejoined.
Because it has been unfolded, it does not make clear
that only opposite pairs of cells are actually parallel.

21.2 Simplexes
Challenge The most symmetric way to do five
balls is to build a green regular tetrahedron and then
join all vertices to a center zomeball with yellow
struts. For six or seven balls, see Exploration B.

Q1 Each simplex has one more vertex than the
previous. Generally, there are n + 1 vertices in an 
n-dimensional simplex.

Q2 Five vertices

Q3 Each simplex has the number of edges in the
previous plus the number of vertices in the previous
(because we add a new edge for each vertex of the
previous simplex). Because every pair of vertices 
is connected by an edge, there are �

n(n
2
+ 1)
� edges in

an n-dimensional simplex.

Q4 The 4D simplex should have 6 + 4, or 
�
4

2
· 5
�, = 10 edges.

Q5 It starts as a tetrahedron, to which is added a
new vertex that connects with all the tetrahedron
vertices. It has five vertices and ten edges as
expected.

Q6 A 4D simplex is bounded by five tetrahedra.
These five cells can be seen directly in the model.
One is the exterior tetrahedron.

Q7 A pentagon and pentagram superimposed
(sharing the same five vertices)

Q8 Given an edge, there are three edges that do not
share a vertex with it (and so can be opposite it in a
tetrahedron) and therefore three tetrahedra including
it.That would give 10 times 3 tetrahedra, but since
each tetrahedron has six edges, it was counted 
six times, and we divide by 6 to get five distinct
tetrahedra.An alternate path to the same answer is
that given a vertex, there are four possible triangles
it is not on and therefore four tetrahedra including
it.That would give 5 times 4 tetrahedra, but since
each one has four vertices, we divide by 4 to get 
five distinct tetrahedra once again.

3. A tetrahedron surrounded by four more
tetrahedra, one attached to each face
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21.3 Coordinates and Cross Polytopes
Challenge The dual has eight vertices, each
connected with an edge to six other vertices—all
the others except the one it is “opposite.”There are
24 edges total in this 4D “cross polytope.”

Q1 In the cube, vertices connected by an edge,
such as (1, 1, 1) and (1, 1, –1), differ in only one
coordinate.

Q2 Every edge is parallel to one of the axes, so only
one coordinate can change along an edge. Given the
coordinates of two vertices, if they differ in exactly
one of the coordinate positions, there is an edge
connecting the two vertices; otherwise, there is no
edge.This applies to hypercubes in any number of
dimensions, as long as their edges are parallel to 
the axes.

Q3 All edges are of length 2.A typical edge goes
from (1, –1, –1, 1) to (1, –1, 1, 1), differing in only
the third coordinate.The y1 – y2 term is the only 
nonzero difference, and �(–2)2� = 2.

Q4 From (1, 1, 1, 1) to (–1, –1, –1, –1) is 4, which is
twice the edge length.

Q5 The regular octahedron. It can be placed with
all vertices on the coordinate axes.

Q6 There are two vertices on each of the n axes,
making 2n vertices total.There are 

�
2n(2n

2
– 2)
� = 2n(n – 1)

edges.

Q7 In any number of dimensions, the edge length 
is �2�.

21.4 The 120-Cell
Challenge Three such pentagons are used in this
activity. See Models 1–5.

Q1

Explorations 21

A. Make two parallel 4D hypercube models, and
connect the corresponding vertices.

B. You need six vertices, each connected to the
other five.An octahedron with all vertices connected
to a central ball is one method.The central ball
corresponds to a crossing point, not a vertex. For a
crossing-free model of seven balls (each directly
connected to the other six), start with a triangular
pyramid with g1 base and y1 slanting edges.Also
build a triangular pyramid with b1 base and 
y1 slanting edges. Place them apex-to-apex, with a
common three-fold axis, and combine them so that
they share one ball as their common apex. By
adding three additional b1s, three b2s, and three more
g1s, every ball can directly connect to the others.
This models a 6D simplex. For a 5D simplex,
eliminate one ball and its connecting struts.

C. The vertices of the 4D cross polytope are 
(±1, 0, 0, 0), (0, ±1, 0, 0), (0, 0, ±1, 0), or (0, 0, 0, ±1).
Take one from each group to have four vertices 
each a distance �2� from each other.There are 
16 ways to choose a set of four since we pick one 
of two choices four times. Each choice gives one 
of the 16 regular tetrahedral cells.

D. The form is dual to the 120-cell.

E. The model is like a hexagonal prism 
(b3 hexagons as bases, y3 vertical edges) with two
central vertical axes pushed against each other. Each
connects to alternating base vertices. (There is also
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1

2

3

4

5

Total

Number
in model

1

12

20

12

30

—

Number of 4D 
cells represented

2

24

40

24

30

120



another symmetric projection, centered on a face,
but it is hard to make with the Zome System.)

F. First count that there are 10 faces in the 4D
simplex and 24 faces in the 4D hypercube.Then
observe that V + F = E + C, where C is the
number of 3D cells.This holds for any convex 4D
polytope. More systematically, this can be written 
N0 – N1 + N2 – N3 = 0, where Ni is the number of
i-dimensional components.The alternating sign
pattern continues in the n-dimensional
generalization.

22.1 Stellated Polyhedra
Challenge In each case you see just the inside of
an ordinary regular dodecahedron, which blocks
your view of the rest of the structure.

Q1 The stella octangula is a stellation of the
octahedron.

Q2 The 60 facets are grouped as 20 sets of three.
Each set lies in a yellow plane.This is a stellation of
the icosahedron whose vertices are at the apexes of
the pyramids.

4., Q3

One face of a stellation of the 
icosahedron consists of six facets.

Q4 The interior vertices outline a
rhombicosidodecahedron (3, 4, 5, 4).

22.2 More Stellations
Challenge Answers will vary.

Q1 To go from the first to the second stellation,
24 more rhombic pyramids are added.

Q2 To go from the second to the third stellation,
another 24 pyramids are added. It can be seen as a
compound of six identical irregular tetrahedra. One
cannot build further and maintain the property that
every exterior face is a continuation of an original
rhombic dodecahedron face.

Q3 The planes of the faces of the stellation are those
of the rhombic triacontahedron, and two faces meet
at each edge.

8. The b2s are the points of a small stellated
dodecahedron.

Q4 There are five cubes.This is another way of
understanding the compound of five cubes studied
in Unit 11.

Explorations 22

A. The face planes of the tetrahedron or cube,
when extended, do not meet to form a new edge
for the stellation.

B. All three structures meet the listed criteria.
Each has 12 identical faces, in the planes of the
dodecahedron’s faces, and each has the same
symmetry as the dodecahedron.Around a 
b1 dodecahedron, you can build a b4 small stellated
dodecahedron, then a b3 great dodecahedron, and
then a b6 great stellated dodecahedron.

C. Starting with a g1 cuboctahedron, b1 slanting
edges make the pyramids over the triangular faces,
and g1 slanting edges make the pyramids over the
square faces.The result is the compound of a 
2b1 cube and a 2g1 octahedron in dual position.
The cuboctahedron is their intersection. Starting
with the icosidodecahedron, the result is the
compound of the icosahedron and dodecahedron.
The icosidodecahedron is their intersection.

D. It is a stellation because it has the r1 rhombic
triacontahedron at its core. It has the same number
of faces as the r1 rhombic triacontahedron. Like the
r1 rhombic triacontahedron, it has icosahedral
symmetry.And all of its faces are identical. It is a
polyhedron because two faces meet at each edge.

E. It is another stellation of the rhombic
triacontahedron. Each face consists of two coplanar
rhombi.

F. Each of the 5 tetrahedra contributes 4 of the 
20 faces. Each lies in the yellow plane of an
icosahedron’s face.

G. One triangle from each of two different
octahedra lies in each of the icosahedron’s 
20 face planes.
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H. To start, make a g1 + g2 + g1 square. In each
corner, imagine the hypotenuse of the right triangle
with g1 legs. In a vertical plane, add another pair of
g1 legs to each imaginary hypotenuse. From these
four right angles, insert four b3s that meet at the
center of the square.Turn this over, extend the right
angles in the vertical plane into g1 + g2 + g1 squares,
and treat them like the first square.The
approximation is off by about 2.3% because half the
green edge is 2.568b1 and we use a b3 of length
2.618b1.

23.1 Introduction to Fractals

Q1 4k struts are used.

Q2 �
1
3�. Notice, for example, that the Stage 1 Zome

model is three times as long as the Stage 0 model.

Q3 Take the logarithm (any base) of both sides to
get log[3x] = log[4].Then x log[3] = log[4], so 

x = �ll
o
o
g
g
[
[
4
3
]
]� ≈ 1.26

3.

Stage 2

Q4 The number of struts scales by 8 as the length
scales by 4, so the fractal dimension is 

�
l
l
o
o
g
g
[
[
8
4
]
]� = 1.5

23.2 Sierpiński in Three Dimensions

Q1 The number of pieces scales by 4 every time the
length scales by 2, so it has dimension 

�
l
l
o
o
g
g
[
[
4
2
]
]� = 2

At the limit, this structure is two-dimensional!

23.3 More Three-Dimensional Fractals
Challenge At each level, the fractal consists of four
copies of the previous level: a left-handed version,
two right-handed versions, and one more 
left-handed version.The copies are connected by 
an extra line segment, which is indicated with a
darker line in the figures.

1.–5. The complete path is R-F-L-U-R-N-L — U
— R-U-L-F-R-D-L — F — R-U-L-F-R-D-L —
D — N-D-F-R-N-U-F — R — N-D-F-R-N-U-
F — U — L-U-R-N-L-D-R — N — L-U-R-N-
L-D-R — D — L-F-R-D-L-N-R.

Q1 The 4 × 4 × 4 cube can be doubled to a 
4 × 4 × 8, then 4 × 8 × 8, then 8 × 8 × 8, and so on.

Q2 There are as many edges as vertices, because
they alternate, so a p × q × r block contains 
pqr vertices.

Q3 The number of struts grows from 8 to 64, a
factor of 8.

Q4 �
l
l
o
o
g
g
[
[
8
2
]
]� = 3. It has a dimension of 3 corresponding

to the fact that this curve fills a solid volume of
space when the process is carried out indefinitely!

10. This is also a stack of prism + antiprism +
prism, now all triangular.

Explorations 23

A. At Stage 3, the central pentagram would have to
have a side of length b5.All the pentagrams are
parallel, even though the branches they replace have
five different directions.

B. The perimeter grows infinitely, as at each stage
the new perimeter is �

4
3� of the previous perimeter.

The area, on the other hand, is finite because the
figure is bounded.The initial triangle has area ��4

3��.
The first three bumps have combined area ��12

3��. From
there on, each stage adds �

4
9� of the area added by the

previous stage.At the limit, the total area of the 
bumps is �3�

20
3��,and the total area enclosed by the 

snowflake is �2�
5

3��.

C. The result is a curve that travels throughout an
equilateral triangle but avoids all the holes in the
Sierpiński gasket. It has dimension 

�
l
l
o
o
g
g
[
[
3
2
]
]� ≈ 1.58

Stage 3 of Koch variation
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D. It grows to fill much of a cube.

E. A cluster of 30 dodecahedra (or icosahedra)
touching their neighbors along shared edges,
surrounding a hollow icosidodecahedron

24.1 Proof of Euler’s Theorem

Q1 n = 0: a ball alone. n = 1: any strut with a ball at
each end. n = 2: three balls connected in a line or as
two sides of a triangle.

Q2 n = 3:There are two possibilities: a snake
arrangement, and a Y. n = 4:There are three
possibilities: a snake, a starburst, and a Y with 
one arm having two segments.

Q3 No.A polygon has the same number of struts
and balls, so it does not satisfy the definition.

Q4–Q5 A tree never contains a loop.To see why,
think of building any tree, starting with just a ball—
the simplest tree.Then add a strut and another ball.
This makes the next simplest type of tree. Keep
going, by adding a strut and a ball at each step, for as
many steps as you need.At each step we add one to
the number of struts and the number of balls, so we
always preserve the property that there is one more
ball than strut.After each step, every strut has both
ends inserted in some ball. In a tree, both ends of
every strut always have a ball attached.There is never
an opportunity to close a loop.This argument
assumes that a complex tree can always be
constructed by adding a strut and a ball to a simpler
tree.This is so because every tree (except the n = 0
case) must have some ends. (The ends are called
leaves—balls that touch only one strut.) If there were
no leaves, every ball would touch at least two struts,
which would imply by a counting argument that the
number of struts is greater than or equal to the
number of balls, contradicting the definition.

Q6 There are 12 balls, and we do not remove any.
A tree has one fewer strut than ball, so our tree must
have 11 struts.We must remove 19 of the original
30 struts.There are many choices as to which ones
to pick.

Q7 There are 20 balls in a dodecahedron, and we do
not remove any.A tree has one fewer strut than ball,
so there are 19 struts in a tree chosen from a
dodecahedron.We would remove 11 of the original
30 struts.There are many choices as to which ones
to pick.

Q8 Yes. Starting with any icosahedron tree, this
process always gives us a dodecahedron tree as well.
As we saw in Question 7, the number of struts
needed for a tree in a dodecahedron is 19. But
having 19 struts is no guarantee that they form a
tree.We also need to show they are connected and
do not form loops. If you built your model
correctly, this will be the case.

Q9

Sample Schlegel-based proof drawing 
for the cube and octahedron 

24.2 Proof of Descartes’ Theorem

Q1 F = �
2
3�E or E = �

3
2�F. There are F triangles,

which have a total of 3F edges. However, each edge
is shared among two triangles and therefore was
counted twice. So E = �

3
2�F.

Q2 V + F = �
3
2�F + 2, so V = �

1
2�F + 2

Q3 There are 180F degrees of angle altogether,
since the angles in each triangle sum to 180.

Q4 There would be 360V degrees of angle total, if
it weren’t for the deficit at each vertex.Taking all
the deficits into account, we find the total of all the
angles is 360V – D.

Q5 180F = 360V – D

Q6 Solving the system 

180F = 360V – D
V = �

1
2�F + 2

yields D = 720

Explorations 24

A. If the rhombic triacontahedron and
icosidodecahedron are chosen, there are 31 edges in
the first tree and 29 edges in the second.

B. D = 0 for a one-hole torus.
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C.

Torus with five-fold symmetry

D. For a two-hole torus, V + F = E – 2 and 
D = –720.

Explorations 25

A. a. In the blue plane, there are 12 equatorial
directions (4 blue, 4 red, and 4 yellow).You can
make a 12-sided planar polygon in this plane, with
one edge for each direction.

b. Green struts provide four more directions in
this plane (45 degrees from the blues) allowing the
construction of a planar 16-gon in the blue plane.
However, there is an equilateral 18-gon constructible
in the yellow plane. It is not exactly equiangular, but
it is almost circular. Use six b1s and 12 gb1s,
repeating in the pattern blue-green-green, always
making the slightest turn possible, and taking care to
remain in the plane.

B. There are only three equilateral pyramids.The
base can be a 3-, 4-, or 5-gon. (With a 6-gon base,
the pyramid would be flat, and with 7 or more sides,
the slant edges would be too short to meet.) All 
are Zome-constructible: 3 and 4 are green, 5 is 
blue. Prisms and antiprisms on any regular n-gon
can be equilateral in general, but few are 
Zome-constructible: the cube (which is also a 
4-gon prism), a regular equilateral 8-gon prism,
the octahedron (which is also a 3-gon antiprism),
and the equilateral 5-gon antiprism.

C. Antiprisms with green struts:

regular octahedron

b1 equilateral 3-gon bases with g1 slanting edges

g1 equilateral 3-gon bases with b1 slanting
edges (This is a cube deeply truncated at 
two opposite vertices, and it has isosceles 
right triangles for sides.)

g1 equilateral 3-gon bases with y1 slanting edges

b3 5-gon bases with g1 slanting edges (very flat)

b1 5-gon bases with g2 slanting edges 
(not Zome-constructible since two greens must 
go in the same red hole)

D. One with a three-fold axis of symmetry is 
b3-g2-b3-g2-b3-g2-. One with a two-fold axis is 
r2-b2-b1-y1-b1-b2-.

E. There are 16 possible triangles (counting similar
triangles only once) that can be made with blue, red,
and yellow: two right triangles (b1-b3-2y2 and 
b1-b2-2r1), eight isosceles triangles (b2 base and
anything but r3 for a side), and six more in the blue
plane (b1-y1-r2, b2-y1-r2, b2-r1-y3, b3-r1-y3, r1-y1-y2,
and r1-r2-y2). (There are 39 more Zome triangles
that contain green struts.)

F. If you take a zomeball and place 10 b1s in the red
plane and 10 y1s in the yellow holes closest to this
plane, you have the directions for the edges of the
20-gon. Using 20 r3s to connect the 20-gon to a
copy of itself makes for a stable wheel. For a 
12-sided wheel, place six b1s in the yellow plane and
six r1s in the red holes closest to this plane, and use
those directions to make an almost-planar 12-gon.
Use 12 y3s to connect it to a parallel base.There are
several analogous forms you can make near the blue
equator, but they won’t have equal dihedral angles;
compare how they roll.

G. From inside to outside: 2b1 icosahedron,
g1 + g2 octahedron, 2(g1 + g2) tetrahedron,
2b3 cube, 2b2 dodecahedron. (There are two variants,
according to whether the icosahedron sits 
left-handed or right-handed in the octahedron.) 

H. A triple-scale equilateral triangle is naturally
dissected into nine smaller equilateral triangles.Take
these in groups of three to form three equal
trapezoids for each of the faces of the icosahedron.
To demonstrate this icosahedron and the
dodecahedron with faces divided into the 
five trapezoids described, you can trace your 
fingers along the respective models.

I. a. the cube

b. the y2 rhombic enneacontahedron, consisting
of 90 yellow rhombi (60 fat, 30 skinny)
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J. a.–c. Build the solids in sizes b2 and b3, and
connect them with y1 or r1 struts that would meet at
the common center if extended.

d. Build in sizes y2 and y3 and connect with 
b1 and y1.

e. Build in r2 and r3 and connect with y2

and r2.

K. a. Scale model of the zomeball

b. An arrangement of six skew decagons

c. With the rhombic dodecahedron, for
example, you get a blue and green distorted
rhombicuboctahedron and an interesting compound
of four skew hexagons.

L. The ball looks like a rhombicuboctahedron, with
6 square holes, 8 triangular holes, and 12 rectangular
holes. In the rhombicuboctahedron, opposite
triangles are not parallel, so a twist is needed in the
triangular struts.The square and rectangular struts do
not need twists. See Peter Pearce’s Structure in Nature
Is a Strategy for Design for pictures and a description
of one such construction system.

M. To the 31 directions of the zomeball, add 30 
(5 times 12 divided by 2) green directions to get 
61 directions, requiring 122 holes.The new ball
would correspond to a polyhedron with 122 faces.
The green holes lie between adjacent red and 
yellow holes.The simplest such zomeball is the
zonish polyhedron described in Unit 18 as an
icosidodecahedron expanded in ten yellow
directions; it has skinny yellow rhombi in the blue
directions and b-y-y-b-y-y hexagons in the green
directions.

N. At most, three films meet at an edge in a bubble
structure—never four or more—and they meet with
dihedral angles of 120 degrees.The bubble films are
like sheets of stretched rubber, which want to be as
small as possible.The films self-adjust to minimize
their total surface area. It can be shown (by
advanced mathematical techniques) that minimal
area films involve only 120-degree dihedral angles.
So the only Platonic solids inside of which bubbles
of the same shape form are those with three edges
per vertex—the cube, dodecahedron, and
tetrahedron. Suppose four films met at an edge, with

dihedral angles of 90 degrees.A cross section would
look like the figure.

Cross section of bubble films

The illustration on the right shows what happens 
if the film splits into 2 three-way joints (with 
120-degree angles) rather than 1 four-way joint,
again in cross section. Suppose that the edge of the
outer square is of length 1 in each case.Then the
four lengths in the illustration at left add to 2�2�,
roughly 2.828, while the five lengths in the 
illustration at right add to 1 + �3�, roughly 2.732.
The latter is smaller, so the bubbles choose it as a
better structure, spontaneously splitting a four-way
edge into 2 three-way edges with a new connecting
surface.

O. This red and yellow nonconvex polyhedron has
120 red and yellow parallelograms and 60 red
rhombi arranged like a giant flower ball.

P. The result is a b3 icosidodecahedron with
pentagrams in the pentagonal faces. Each equatorial
decagon has a b2 decagon within it, with edges
extended to meet the b3 decagon. Each brick has
edges b3, b4, and b5. Half the sphere makes a very
sturdy dome.

Q. There are 60 squares (5 in each of 12 saucers)
and 200 triangles (120 in antiprisms, 60 in saucers,
and 20 on the three-fold axes).

R. The icosidodecahedron has 30 vertices and each
connects to four neighbors.The vertices of a b1

icosidodecahedron can be used to locate the centers
of 30 spheres of radius �

1
2�b1, each of which contacts

four neighbors.The distance from the center of the
polyhedron to a vertex is b2, so a central sphere in
contact with the 30 small spheres has radius 
b2 – �

b
2

1�.The ratio of large sphere radius to small is
then 

= 2τ – 1 = �5�

For other Sangaku problems, see “Japanese Temple
Geometry,” Scientific American, May 1998.

τ – �
1
2�

�
�
1
2�
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S. The Archimedean solids have identical vertices,
so the vertices are all the same distance from the
center. But they have more than one face type.The
larger faces will have centers closer to the center of
the sphere.The duals to the Archimedean solids,
such as the rhombic dodecahedron and the rhombic
triacontahedron, have identical faces.Their faces are
all the same distance from the center, but they have
two types of vertices at different distances from the
center.

T. Cube: Divide one face of a 2b1 cube into 
eight congruent b1-b1-g1 triangles that meet at 
the face center, and connect each triangle to the
center of the cube with a b1, a g1, and a y1.The
orthoschemes for the other Platonic solids are
defined similarly but cannot be constructed with 
the Zome System. In the tetrahedron there are 
24 orthoschemes, in the octahedron there are 
48 (the same number as the cube), and in the
icosahedron and the dodecahedron there are 120.

U. If there were 2 five-fold axes, spinning one
around the other, a fifth of a revolution would move
the axis into the position of another five-fold axis,
so there would have to be at least 6. Other than 1
and 6, it turns out that the only other possibility 
is to have infinitely many, as in a sphere, where 
every diameter is an n-fold axis for all n. Similarly,
there can be 0, 1, or 4 three-fold axes (as in a 
brick, a triangular prism, or a cube) but not 
2 or 3 three-fold axes.

V. Any plane that contains a two-fold or four-fold
axis is a solution, so there are infinitely many,
although most are not Zome-constructible.
Constructible planes arise from slicing through the
center with a plane perpendicular to any of the
symmetry axes, except for the three-fold axes in 
the case of the tetrahedron. Slicing the cube or
octahedron perpendicularly to the two-fold or 
four-fold axes gives its 9 mirror planes. But they 
can also be sliced perpendicularly to each of the 
4 three-fold axes to obtain two halves with a
hexagonal cross section. For the icosahedron and 
the dodecahedron, slicing perpendicularly to the 
two-fold axes gives the 15 mirror planes, but they

can also be sliced in half perpendicularly to five-fold
axes (revealing regular 10-gons) or three-fold axes
(revealing regular 6-gons in the dodecahedron or
irregular 12-gons in the icosahedron). For the
tetrahedron, there are 6 mirror planes and 3 cuts
perpendicular to the two-fold axes, revealing squares.

W. Paper disphenoids cannot be made from right
triangles, because they end up flat. Nor can they 
be folded from obtuse triangles, because the two
smaller angles sum to less than the largest angle 
and so cannot close at a vertex.A disphenoid 
with four isosceles faces can be made from 
two bx struts and four yx struts.There are no other
Zome-constructible disphenoids except the regular
tetrahedron.

X. a. The small stellated dodecahedron is 
0-equivalent to the icosahedron and 1-equivalent 
to the great icosahedron.

b. Find the 8-gons in the rhombicubocta-
hedron’s edges. Note that 6 squares (the blue ones)
share edges only with squares, while 12 others (the
green-and-blue ones) share edges with squares and
triangles. Remove the triangles and 6 squares to get
a (4, 8, 4, 8), or remove the 12 squares to get a 
(3, 8, 4, 8). (One can also find pairs of 3-equivalent
4D objects.)

Y. The final form is like an r2 rhombic
triacontahedron, with two r1s making a bridge over
each rhombus’s short diagonal, and the r1s continued
with r2s to make three-fold points. It is dual to the 

�3, �
5
2�, 3, �

5
2�� and is another stellation of the rhombic

triacontahedron.

Z. The irregular decagon shapes are: b2-r2-y2-y2-r2-
b2-r2-y2-y2-r2 and b2-y2-r1-r1-y2-b2-y2-r1-r1-y2.
Tunnels of regular 10-gons pass completely through
it in six directions.The large central tunnel is
surrounded by ten smaller tunnels and then ten even
smaller tunnels.After this, try three of its cousins:
the 120-cell truncated to its edge midpoints, the
truncated 600-cell, and the 600-cell truncated to its
edge midpoints.
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Index of Polyhedra

(3, 10, 3, 10) small
icosihemidodecahedron

(3, 10, 5, 10) small
dodecicosidodecahedron

(4, 10, 4, 10) small
rhombidodecahedron

(5, 10, 5, 10) small
dodecahemidodecahedron

120-cell

16-hedron 

16-hedron (space-filling)

31-zone zonohedron

600-cell

antiprisms

bilunabirotunda

compound of 3 cubes

compound of 5 cubes

compound of 5 octahedra

compound of 5 rhombic
dodecahedra

compound of 5 tetrahedra

compound of cube and octahedron

compound of cuboctahedron and
rhombic dodecahedron

compound of icosahedron and
dodecahedron

compound of icosidodecahedron 
and rhombic triacontahedron

cube

cuboctahedron

cuboctahedron with 4 zones

60 bx, 30 balls

120 bx, 60 balls

120 bx, 60 balls

60 bx, 30 balls

180 b2, 200 y2, 180 r1, 180 r2,
330 balls

30 b1, 12 b2, 20 balls

18 gx, 12 yx, 16 balls

360 b1, 240 y1, 120 r1, 480 balls

120 b2, 120 y2, 72 r1, 72 r2, 75 balls

varies

26 bx, 14 balls

48 g1, 24 g2, 12 b3, 54 balls

60 b1, 120 b2, 30 b3, 80 balls

180 g1, 240 g2, 302 balls

240 y2, 120 y1, 170 balls

30 b1, 30 g2, 20 balls

24 b1, 24 g1, 26 balls

48 g1, 72 y1, 60 balls

60 b1, 60 b2, 62 balls

120 b2, 60 r1, 60 r3, 122 balls

12 bx, 8 balls

24 gx, 12 balls

48 gx, 48 yx, 48 balls

20.3

20.3

20.3

20.3

21.4, 25E

5E

16E

14E

21E

1.2, 1.3, 1E, 4E, 5.1, 5.2, 6.1, 6.2,
9.3, 10.1, 12.2, 14E, 17E, 23.3, 25E

16E

22E

11.2, 11E, 20E, 22.2

11.3, 22E

11E

11.3, 11E, 22E

9.2, 22E

12E

9.2, 22E, 24.1

9E, 12E

1.2, 2.2, 3.2, 3.3, 3.4, 3E, 4.1, 4E, 5.1,
5.2, 5.3, 6.1, 9.2, 10.1, 10.2, 11.1,
11.2, 11.3, 11E, 12.2, 12.3, 12E, 13.1,
13.3, 13E, 14.1, 14.3, 14E, 16.1, 16.2,
16.3, 16E, 17.1, 17.2, 19.1, 19.2, 19E,
21.1, 21E, 22E, 23.3, 23E, 25E

3.4, 3E, 12.3, 12E, 16.1, 16.2, 16E,
19.2, 22E, 24E, 25E

18E

Bolded entries indicate sections where building directions can be found.

Polyhedron (or Figure) Materials Needed Section
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Index of Polyhedra (continued)

cuboctahedron, stellated

deltahedron, concave equilateral

diamond lattice

dipyramid, pentagonal

disphenoid

dodecahedron, concave

dodecahedron, regular

dodecahedron with 6 zones

dodecahedron with 10 zones

dodecahedron, elevated

FCC lattice

fractal pentagram

golden brick

great dodecahedron

great icosahedron

great stellated dodecahedron

heptahedron

heptahedron, one-sided

hexecontahedron based on chiral
icosahedron

hexecontahedron based on chiral
dodecahedron

hexecontahedron, non-convex
equilateral

hexagonal close packing

Hilbert curve, 3D

hypercube, 4D

icosahedron, regular

48 gx, 24 bx, 26 balls

90 bx, 32 balls

varies

varies

2 bx, 4 yx, 4 balls

30 bx, 20 balls

30 bx, 20 balls

60 bx, 60 ry, 72 balls

120 bx, 240 yx, 260 balls

30 bx, 60 bx+1, 32 balls

36 gx, 14 balls

Stage 2: 25 b1, 50 b2, 5 b3, 50 balls
Stage 3: 125 b1, 255 b2, 35 b3,
250 balls

4 b1, 4 b2, 4 b3, 8 balls

30 bx,12 balls

30 bx, 60 bx+1, 32 balls

30 bx, 60 bx+1, 32 balls

varies

12 gx, 6 balls

150 b1, 92 balls

60 b1, 30 b2, 60 b3, 92 balls

60 bx, 32 balls

varies

63 b1, 64 balls

12 b1, 12 b3, 8 y1, 16 balls

30 bx, 12 balls

22E

2E, 4E, 19E, 22.1

16E

9E

25E

11E, 16E, 25E

2.1, 2.2, 2E, 3.3, 3E, 4.1, 4E, 5.1, 5E,
6.1, 6.2, 9.2, 9.3, 10.1, 10.2, 11.1,
11.2, 11.3, 11E, 12.1, 12.2, 12.3, 12E,
13.1, 13.3, 13E, 14.1, 14E, 15.2, 15E,
16E, 17.2, 17E, 18.1, 19.1, 19.2, 19E,
20.2, 21.4, 22.1, 22E, 23E, 24.1, 25E

18.1

18E

2E, 4E, 20.2, 25E

16.2, 16.3

23E

5.2, 14E, 17.1, 25E

20.2, 20E, 22.1, 22E, 25E

20.2, 20E, 25E

19E, 20.2, 20E, 22.1, 22E

6E

20E

25E

25E

10.2

16.2

23.3

21.1, 21E

2.1, 2.2, 2E, 3.3, 3E, 4.1, 4E, 5.1, 5E,
6.1, 6.2, 9.2, 9.3, 10.1, 11.3, 11E,
12.1, 12.2, 12.3, 12E, 13.3, 13E, 14.1,
14E, 15.2, 15E, 17.2, 18.3, 19.1, 19.2,
19E, 20.2, 21E, 22.1, 22E, 23E, 24.1,
24.2, 25E

Polyhedron (or Figure) Materials Needed Section
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Index of Polyhedra (continued)

icosahedron with 10 zones

icosahedron, 2 stellations

icosidodecahedron

icosidodecahedron with 6 zones

icosidodecahedron with 10 zones

icosidodecahedron, stellated

kite-ohedron

Koch curve

Koch curve variation

octahedron, regular

octet truss

orthoscheme

parallelepiped

pentagrammatic concave
trapezohedron

pentagrammatic crossed antiprism

prismatoid

prisms

pyramids

pyritohedron

rhombic dodecahedron 1

rhombic dodecahedron 1,
2 stellations

rhombic dodecahedron 1, elongated

rhombic dodecahedron 2

180 y3, 60 b3, 132 balls

#1: 30 b3, 60 b2, 60 g2, 30 g1,
80 balls
#2 (1st stellation): #1 + 60 gx,
32 balls

60 bx, 30 balls

120 b3, 120 r3, 120 balls

120 b3, 182 y3, 180 balls

120 b3, 60 b2, 62 balls

varies

Stage 3: 64 b1, 65 balls
Stage 4: 256 b1, 257 balls

Stage 3: 27 bx, 26 balls
Stage 4: 81 bx, 80 balls

12 gx, 6 balls

varies

3 b1, 2 g1, 2 y1, 5 balls

12 struts (any color), 8 balls

10 b1, 30 b2, 22 balls

20 b1, 40 b2, 30 balls

varies

varies

varies

36 bx, 26 balls

24 yx, 14 balls

#1: 48 yx, 24 bx, 26 balls
#2: #1 + 72 yx, 24 balls

24 yx, 4 bx, 18 balls

24 rx, 14 balls

18.2

22.1

3E, 12.1, 12.3, 12E, 19.2, 20.3, 22E,
24E, 25E

18.2

18E, 25E

22E

9.3, 9E

23.1, 23E

23E

3.2, 3.3, 3.4, 3E, 4.1, 4E, 5.1, 5.3,
6.1, 6.2, 9.2, 9E, 10.1, 11.3, 11E,
12.2, 12.3, 12E, 13.3, 13E, 14E, 16.1,
16.3, 16E, 19.2, 20E, 21.3, 21E, 22.1,
23.2, 24.2, 25E

16.3, 18.3

25E

3E, 13.3, 14.2, 14.3, 16E, 19E, 25E

20E

20.3, 20E

17E

1.2, 1E, 3.1, 4E, 5.1, 5.2, 6.1, 6.2,
9E, 10.1, 12.2, 13.3, 14.3, 16.1, 16E,
17.1, 17.2, 17E, 18.3, 20.2, 21E, 23.3,
25E

1.2, 1E, 3.1, 4E, 5.1, 5.2, 6.1, 6.2,
9.3, 10.1, 12.2, 16.1, 16.2, 16.3, 17.2,
17E, 18.3, 21E, 22.1, 22.2, 22E, 23E,
25E

5.3

11E, 12E, 14.1, 14.2, 14.3, 14E,
16.1, 17.2, 21.1, 22.2, 24E, 25E

22.2

16.1

14.1, 14.2, 14.3, 14E, 17.1

Polyhedron (or Figure) Materials Needed Section
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Index of Polyhedra (continued)

rhombic enneacontahedron

rhombic hexahedron

rhombic triacontahedron

rhombic triacontahedron (rt),
4 stellations

rhombicosidodecahedron

rhombicosidodecahedron, 2-layer

rhombicuboctahedron

rhombohedron

Sierpiński’s gasket, 3D

small stellated dodecahedron

snowflake curve

snub cube

snub dodecahedron

stella octangula

stella octangula, fractal

tetrahedron, regular

tetrahedron, elevated

toroidal polyhedron

trapezohedron (kite-ohedron)

trapezoid-ohedron

trees

truncated 120-cell

truncated 600-cell

truncated cube

truncated cuboctahedron

truncated dodecahedron

180 yx, 92 balls

12 yx or bx, 8 balls

60 rx, 32 balls

red: rt + 60 r1, 120 r2, 30 b2,
184 balls
red #2: 132 rx, 63 balls
yellow: rt + 120 y1, 120 y2, 72 balls
blue: rt + 60 b1, 120 b2, 30 b3,
80 balls

120 bx, 60 balls

varies

24 bx, 24 gbx, 24 balls

12 yx, rx, or bx, 8 balls

96 gx, 32 balls

30 bx, 60 bx+1, 32 balls

Stage 3: 192 b1, 192 balls
Stage 4: 768 b1, 768 balls

not Zome-constructible

not Zome-constructible

36 gx, 14 balls

144 gx, 78 balls

6 gx, 4 balls

18 gx, 4 balls

420 bx, 140 balls

10 b1, 10 b3, 12 balls 

60 r2, 12 r1, 12 y2, 38 balls

varies

many

many

12 bx, 24 gx, 24 balls

24 bx, 48 gbx, 48 balls

90 bx, 60 balls

14.3, 14E

14.1, 14.2

2E, 4E, 9E, 10.1, 11E, 12E, 14.1,
14.2, 14.3, 14E, 17E, 18.1, 21E, 22.2,
22E, 24E, 25E

20E, 22.2, 22E, 25E

12.3, 12E, 20.3, 23.3, 25E

18.3

12.3, 12E, 16E, 25E

14.1, 14.2, 14E, 16.3, 16E, 17.1,
17E, 22E

23.2, 23E

20.2, 20E, 22.1, 22E, 25E

23.1, 23E

12.3, 25E

12.3, 12E, 25E

3.2, 9.3, 13.3, 16.3, 22.1

23E

3.2, 3.3, 3.4, 3E, 4.1, 4E, 5.1, 5.3,
6.1, 6.2, 9.2, 10.1, 11.3, 11E, 12.2,
12.3, 12E, 13.3, 16.1, 16.3, 16E, 19.1,
21.2, 21E, 22.1, 22E, 23.2, 23E, 24.2,
25E

25E

25E

9.3, 9E

5E

23.2, 24.1

25E

25E

3.4, 3E, 12.3, 12E, 16E, 19E, 25E

12.3, 12E, 14.3, 16E, 25E

3E, 12.3, 12E, 25E

Polyhedron (or Figure) Materials Needed Section
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truncated icosahedron

truncated icosidodecahedron

truncated octahedron

truncated rhombicuboctahedron

truncated tetrahedron

zonohedron, polar

90 bx, 60 balls

180 bx, 120 balls

36 gx, 24 balls

144 bx and gbx struts, 96 balls

18 gx, 12 balls

varies

3E, 4E, 10E, 12.3, 12E, 19.2, 19E,
25E 

10E, 12.3, 12E, 14.3, 18.2, 25E

3.4, 3E, 12.3, 12E, 14.3, 16.1, 16E,
18.3, 25E

16E

3E, 12.3, 16E, 19.2, 25E

14.1, 14.2, 14.3, 14E

Polyhedron (or Figure) Materials Needed Section
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Zome Struts

b1

b3 y2 y3 r2 r3 g1 g2

gb1

r1

y1

b2
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