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Biographical Notes
Hermann von Baravalle

Hermann von Baravalle (1898-1973) came from an
aristocratic family that had close connections with the royal
family the Austro-Hungarian Empire. He was swept into
World War I, at the age of seventeen. While in the army he
learned of anthroposophy, a philosophy developed by Rudolf
Steiner, and made a trip to meet Steiner while he was on leave.

Steiner had been closely associated with the theosophical
movement but had also written philosophical treatises that
bear no trace of the concern with hidden masters that occupied
the theosophical movement. In 19107 he had separated from
the theosophical movement to form the anthroposophical
movement. The root cause of this split was probably Steiner’s
growing interest in Christianity in contrast to the orientalism
that had surrounded theosophy.

When the war ended the old Austria was gone. Von
Baravalle was certainly in a psition to take his life in a new
direction. He had begun studying mathematics at the
University of Vienna. Meanwhile, Emile Molt, who directed
the Waldorf Astoria cigarette company in Stuttgart, Germany,
wanted to start a company school that would represent a new
educational impulse for post-war reconstruction. He asked
Rudolf Steiner to help in the project. Steiner suggested to von
Baravalle that he become a mathematics teacher.

Von Baravalle returned to Vienna, wrote up some of his
ideas on mathematics and physics education, obtained his
Ph.d. in education, and joined the faculty of the first Waldorf
School within a year of its opening in 1919. As the Second
World War drew closer, German education became politicized
and the Waldorf Schools that had spread from Stuttgart were
closed. Dr. von Baravalle arrived in America in 1937, where he
taught mathematics education and assisted in the formation of
American Waldorf Schools.

Several articles written by von Baravalle appeared in the
Mathematics Teacher during the 1940’s. During these years he
had cause to hope that the ideas developed in European
Waldorf Schools might influence the teaching profession in
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6  Arithmetic Lectures

America. He viewed the new math movement that came
around 1960 with deep skepticism, however.

The Mathematics Teacher has kindly given permission for
the reprinting of this article on the golden section, from 1948.




The Geometry of the Pentagon and the Golden Section
Hermann von Baravalle

The Geometry of the Pentagon has become almost a foster-
child besides the other chapters of geometry, as for instance the
geometry of the triangles or of the quadrilaterals. Considering
terminologies, we find the whole field of trigonometry deriving
its name from the geometry of triangles and the “quadrature of
areas” (quadratum = square) from the regular representative of
the quadrilaterals, all units for measuring areas also being
squares.

The characteristic elements of the geometry of the pentagon
are neither related to the trigonometric reproduction of forms
nor to measuring areas. The regular pentagon, however, and
especially the regular stellar pentagram, are used today in the
flags and emblems of the mightiest nations and had a similar
use two and a half thousand years ago when the pentagram
was the emblem of the Pythagorean School. It is the particular
appeal of the pentagon to the sense of beauty, and the unique
variety of mathematical relationships connected with it which
are the characteristics of the geometry of the pentagon.
Therefore, this geometry is particularly fit to stimulate
mathematical interest and investigations. Outstanding among
the mathematical facts connected with the pentagon are the
manifold implications of the irrational ratio of the Golden
Section.

The first figure shows a regular pentagon, and inscribed in
it the pentagram formed by its diagonals. The central area of
the pentagram forms again a regular pentagon in reverse
position. In this pentagon another pentagram has been
inscribed. The total diagram of Figure 1 contains three
horizontal lines, among them the base of the pentagon. Due to
symmetry there is a group of three parallel lines coordinated in
the same way to every one of the five sides of the pentagon.
These parallel lines form between them two types of rhombi,
smaller and larger ones.

One of the smaller and one of the larger rhombi is marked
in Figure 2 and Figure 3. A diagonal divides a rhombus into
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Figure 1

two congruent isosceles triangles. By folding and bending over
the marked rhombus in Figure 2 along its horizontal diagonal
we shall always reach exactly the opposite vertex of the central
area. Cutting a pentagram out of paper, then bending over its
outer parts and holding the paper before a light will make the
inner pentagram appear in the central area. Folding the
marked rhombus of Figure 3 in the same way, along its
horizontal diagonal, will bring into coincidence two of the
angles which divide the interior angles of a regular pentagon.
Consequently, a pentagram trisects the angles of a
circumscribed pentagon. If one of the partial angles is denoted
by ¢ the angles of the large rhombus of Figure 3 are 2¢; 3¢; 24;
3¢; and those of the small rhombus in Figure 2: ¢; 4¢; 4¢; ¢.

8
A

Figure 2 Figure 3
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The sum of the angles of either of the two rhombi being 104,
360°/10 = 36°. All angles which come in the diagrams of the
Figures 1-3 are of the sizes: 36°; 72°,108° 144°; 180°; 216°
252°; 288°; 324°; and 360°, forming an arithmetic progression
with a difference of 36°.

The line segments in Figure 1, including both the partial
segments between points of intersection and also their sums,
are of six different sizes. The largest are the diagonals of the
large pentagon. Regarding them as of size No. 1 and then
continuing with numbering until we come to size number 6
with the sides of the inmost pentagram, the various sizes
appear in the following quantities:

Line segments of size No. 1 come in the diagram 5 times:

Line segments of size No. 2 come in the diagram 15 times:
Line segments of size No. 3 come in the diagram 15 times:
Line segments of size No. 4 come in the diagram 15 times:
Line segments of size No. 5 come in the diagram 10 times:
Line segments of size No. 6 come in the diagram _5 times:

Total number of segments 65

In Figure 4, three isosceles triangles which are contained in
the pentagram are marked by shading. The sides of the largest
one are of the sizes No. 1; No. 1; No. 2. The sides of the middle
sized triangle are No. 2; No. 2; No 3 and those of the smallest
triangle are No. 3; No. 3; No. 4. In the complete diagram of
Figure 1 further triangles of the same form are contained
which are smaller and have sides of the sizes 5 and 6. The
similarity of all these triangles establishes the following
equations of the ratios of the line segments:

segml _ segm2 _ segm3 _ segm4 _ segmd
segm2 segm3 segm4 segmb  segm6

Therefore, the six sizes of line segments are members of a
geometrical progression. Whereas the angles in the pentagon
diagram make up an arithmetical progression the line
segments form a geometric progression. Denoting the ratio of

this geometric progression by “x” and writing “a” for the line
segment of size 1, we have:




segment of size No. 1 =a
segment of size No. 2 = ax
segment of size No. 3 = ax?
segment of size No. 4 = ax?

segment of size No. n = ax™

Figure 4 Similar triangles in a pentagon

The value of x can be found through the fact that one line
segment of size 3 and one of size 2 make up a pentagram side
of size 1. Therefore ax2 + ax + a or x2 + x = 1. Solving the

equation for x we get x =— % £ Y% + 1. The positive root is

145 % —~ 0.61803398875 -

2 2

which is the number of the Golden Section G.

The expression G =- % + V% + 1 suggests the construction

of a right triangle with the legs of one-half and of one unit.
From its hypotenuse v%+ 1 we subtract one-half unit and
obtain the length of G units.
Starting the construction with any given line segment, one
obtains the original length multiplied by the factor G. All the
65 line segments of the diagram in Figure 1 can thus be
obtained from the large pentagram side. by repeated
application of the described construction.

4




5

Other lengths connected with the pentagram, for instance,
the relative altitudes of its vertices can also be expressed
through G. This can be done by applying the theory of the
complex-number plane. The geometry of a regular n sided
polygon reappears in the nth roots of unity. For the pentagon,
we use a 5th root of unity that corresponds to the equation
x5 — 1 = 0. One of the roots being 1, we get through synthetic
division:

10000 -1
1 1111
11110

1

and obtain the quartic equation x* + x3 + x2 + x + 1 = 0.
Applying to it the method of reciprocal equations, we first
divide by x2 and get:

o2 ik P = O

X x

Then we regroup:

(xz +i2)+(x+l)+ 1=0
x X
Substituting y for x + (1/x) and therefore y2 for x2 + 2 +

(1/x2) or y2 -2 for x2+ (1/x2) the equation takes on the form
y2 + y = 1 which is again the characteristic equation which has

G as its root. The two roots y = can be expressed using

G as —1;‘/5 = G and 1o f = - (G + 1). The values for x are
obtained by solving the equatlons.
x+l= “1+45 =G and x+l—i——(G+ 1).
x 2 %

By multiplying the first equation with x we get: x2 — Gx = - 1.
Its roots are




2
= g + g_ -1
2 4
By multiplying the second equation with x we get:

%2 H1 + G)x = -1 and the roots are

X

2
=_1+GJ_r (1+G) 1
2 4

As G < 1both G2/4 and (1 +G2)/4 are smaller than 1 and
consequently all the four roots are complex. The five roots of
the original equation x5 — 1 =0 are:

G f G* .
ri=1 rg=—+41-—-1
1 2] 9 4
14 (1+G) 1+G (1+G)
Py = Bl =l B - e N e e L
2 4 2 4

_o_[,_¢
2

s e g

r5 4

72‘3("2%}" 41-E15 ) 7’:‘2 (Lz;"dl"gz)
= 1(1,0)
e c |B >
|
) N

Cor, 2 ) T ($-0-%)

Figure 5 The ratio G in the roots of the equation x5 — 1= 0.
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The expressions for r3 and r, can be simplified through the
relation 1 + G = 1/G which is derived from the fundamental
equation x2 + x = 1 through dividing itby x: x+ 1= 1/x. As G is
its positive root we have G + 1 = 1/G. Therefore

r——L 1= L l

37 eg 4G2
1oy 1

P 4G2

Figure 5 shows the location of the five roots on the complex
number plane. They lie on the circle with the radius of one
unit. The abscissae of the five points are the real parts of the
roots:

1;

3 s ’

G, 1+G_ 1. 1+G__ 1 G
2’ 2 26" 2 2G’ 2

(1+G)? 1
] = 1-—;
4 4G
(1+G)> 1
i e =) ]___E_’
4 4G

From the abscissae we obtain the ratios of the line segments in
a pentagram along its axis of symmetry to the radius of the
circumscribed circle. the are all simple linear functions of G.

2 2

-3




Also the radius of the circle which is inscribed in the pentagon
is a simple linear function of G. The radius equals

1+G _1_
2 ~2G

EC=

Thus the ratios of the segments of the pentagram to the
pentagon sides s being expressed along an axis of symmetry to
the radius of the circumscribed circle R being also expressed by
G, all that remains is to tie the two groups together. This will
be achieved through finding the ratio between s and R. The
answer is contained in the ordinate for r3 in figure 5. R being
the radius of the circumscribed circle, half the side of the
pentagon is

which again expresses itself through G.

The number G is also the ratio of areas which are formed
between the pentagon and the pentagrams. The sequence of
areas which is marked in the five diagrams of Figure 6

I
V.H @
v 111

@ (i) (ii1)
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Figure 6 Areas forming a geometric progression with the ratio G

constitutes a geometric progression with the ratio G. The ring-
shaped area marked in the first diagram, (i), is composed of
five times the area of AI Il E. Taking II E as the base and
diminishing it by multiplying with G while keeping the altitude
of the triangle unchanged, we get AIl A I which is one of the
five marked triangles of the second diagram, (ii). In comparison
to AIT A I the base of AAEI is again reduced by G while its
altitude remains the same. five times the triangle AEI equals
the marked triangles of the third diagram. In order to take the
next step to the fourth diagram, (iv), we consider again AAEI
which is congruent to AAEC. Taking AC as its base and
reducing it by the ratio G to CH without changing the altitude
we get AHCE which is congruent to ACED. By subtracting from
the triangle CED the triangle EDK and adding instead the
congruent triangle CDF we obtain the quadrilateral CKDF
which taken five times makes up the marked area of the fourth
diagram. This area, therefore, represents the third diagram’s
area reduced by G. Finally, we take up once more the triangle
CED which equals one-fifth of the marked area of the fourth
diagram. Reducing its base CE by the ratio G without changing
the altitude, we obtain the triangle CKD which taken five
times makes up the marked ring-shaped area of the fifth
diagram. Denoting the total marked areas of the first diagram
with A the marked area of the successive diagrams form the
geometric progression: A; AG; AGZ; AG3; AG*. The last ring-
shaped area occupies the same place within the inner

9
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pentagram as the first ring-shaped area in the outer one. The
ratio between the two rings is therefore G4 which checks with a
previously found result that corresponding sides of the two
pentagons have the ratio G2. the white area left over in the
middle of the last diagram is also G* times the white area in
the middle of the first diagram.

\\\\\}\&X\\\\\\?\h\\\\\\\\\\\..

Figure 7 The ratio G in the regular decagon.

The part the ratio G plays in a pentagram also carries over
into the domain of the regular decagon: G is the ratio of the
side of a regular decagon to the radius of the circumscribed
circle. Figure 7 shows a regular decagon. Its vertices are joined
with the center and thus the angle of 360° around the center is
divided into ten equal angles of 36°. Ten pentagrams can be
placed around the center to fit in these spaces. Every second of
them is drawn in Figure 7 and marked through shading. The
sides of these pentagrams equal the decagon side. the ratio
between these two sizes is G. The usual construction of the side
of a regular decagon to be inscribed in a given circle is an
application of G.

In solid geometry G reappears in the geometry of the
pentagon-dodecahedron, which contains pentagons as its faces,
and in the icosahedron which contain pentagons as plane
sections.

The ratio G appears furthermore in geometric figures which
are not connected with pentagons or decagons. One of them is a
square which is inscribed in a semi-circle (Figure 8). Whereas

10
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Figure 8 The ratio G in a square inscribed in a semi-circle

the the three line segments of a pentagram side have the
smaller one in the middle and the larger ones to the sides, we
have the reverse sequence in Figure 8. Nevertheless, the ratio
between the two segments is again G. To prove it we use the
similar triangles BCD and ABD. Denoting the ratio of the
shorter to the longer legs as x we have:

BD AD

CD BD
and therefore BD = CDx; AD = BD-x=CD-x2. As AD+ BD =
AD + DE = AE and AE = CD we have: CDx2 + CDx = CD or
x2 + x = 1, the positive root being G. This result can also be
interpreted in solid geometry, dealing with an equilateral
cylinder inscribed in a hemisphere.
Another appearance of G occurs in a circle inscribed in an
isosceles triangle which in turn is inscribed in a square ( shown
in Figure 9) or, interpreted in solid geometry, in a sphere
inscribed in a cone which in turn is inscribed in an equilateral
cylinder or a cube. The three angles in Figure 9 marked as ¢
are equal to one another (one pair are angles on the base of an
isosceles triangle, and another pair perpendicular angles)

therefore: AABE ~ AAED (the triangles have one angle in
common and contain another pair of equal angles ¢ ). Therefore

AB _ AE
AE AD’

11
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Figure 9 The ratio G in a circle inscribed in an
isosceles triangle which is in turn inscribed in a square

Denoting these two, equal ratios as x we have AE = AD-x and

AB = AE-x + AD-x2. Then AADF ~ AEC (the triangles have
both right angles and have their angle at A in common). In the
large triangle ADF the ratio of the larger to the smaller leg is
2; therefore the corresponding ratio in the smaller triangle is
also 2 and AE must equal twice the radius of the circle.

Therefore, AE = BD. Substituting AE which is AD-x for BD and

AB = AD-x2 for AB into the equation AB + BD = AD we get
ADx? + ADx = AD which is again the fundamental equation x2
+ x = 1 with the positive root x = G.

G is also the ratio of the smaller leg to the hypoteneuse of a
right triangle the sides of which form a geometrical
progression. (The right triangle the sides of which form an
arithmetic progression is the Egyptian triangle with the sides
3; 4; 5). Denoting the hypoteneuse of a right triangle whose
sides form a geometrical progression as “a” the larger leg is a-x
and the smaller leg is a:x2. From the theorem of Pythagoras we
get a2 = (ax)?2 + (ax?)?2 or x* + x2 = 1 which gives for x2 the
positive root G. Therefore the smaller leg of the right triangle

being a-x2 equals a-G.

12
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Arithmetically the number G also shows outstanding
qualities. First it has the same infinite sequence of decimals as

its reciprocal value: G = 0.61803398875 ---.

1/G = 1.61803398875 ---.
It is the only positive number which forms its reciprocal value
by adding 1. This results from the equation x2 + x = 1 by

dividing it by x: x + 1 = (1/x). Then G can be expressed as the
limit of a continued fraction written only using the numeral 1.

1
1
1
1
1

1+---

G=

1+

1+
1+
1+

By computing this continued fraction step by step, we get the
following fractions:

The numerators can be obtained by adding the numerators of
the two preceeding fractions, and the same holds good for the
denominators form a Series of Fibonacci:

1;1; 2; 3; 5; 8; 13; 21; 34; 34; 55; 89; -

in which each term is the sum of the two preceeding ones. G is
the limit of the ratios of two successive terms in the Series of
Fibonacci. This series starts with two terms of 1. If instead any
other numbers are chosen (excluding zero) which can be
integers or fractions and the same procedure is applied to them
G will still appear as the limit of the ratios of two successive
terms. This is shown in the following example in which the
arbitrarily the numbers 5 and 24 have been chosen:

5
24 5+ 24 =0.2083...

13
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5 + 24 = 29 24 + 29 =0.8276...
24 + 29 = 53 29 =+ 53 =0.5472...
29 + 53 = 82 53 + 82 =0.6463...
53 + 82 = 135 82+ 135 =0.6074...
82 + 135= 217 135+ 217 =0.6221...
135 + 217= 352 217+ 352 =0.6165...
217 + 352= 569 352+ 569 =0.6187...
352 + 569= 921 569 + 921 =0.6178...
569 + 921= 1490 921+ 1490 =0.6181...
921 + 1490= 2411 1490 + 2411 =0.6180...
1490+ 2411= 3901 2411+ 3901 =0.6180...

In our example, the first four decimals of G are obtained at the
11th division

G can also be expressed as a limit of square roots in which 1
is again the only numeral used:

G= 1
\E+\/1+\/1+\/;\/1_+1ﬁ

(the proofs which use the theory of limits are here omitted).

In the history of mathematics references to the number G
lead back to the oldest geometric records. There is a passage in
Herodotus in which he relates that the Egyptian priests had
told him that the proportions of the Great Pyramid at Gizeh
were so chosen that the areaof a square whose sides is the
height of the Great Pyramid equals the area of a face triangle.
Writing “2b” for the side of the base of the Pyramid (see Figure
10) and “@” for the altitude of a face triangle and “h” for the
height of the Pyramid, Herodotus’ relation is expressed in the
following equation:

h2 = (2b-a)/2 = a-b

14
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Figure 10A

As “@” is the hypoteneuse of a right triangle with the legs “b”
and “h” we can apply the theorem of Pythagoras and get: a2 =
b2 + h2 or h?=a? - bZ. Equating the expressions for hZ in the
two equations we obtain a2 — b% = ab or b2 = ab = a2. Dividing
the equation by a? we have (b/a2) + (b/a) = 1. substituting x for
the ratio b/a we are back at the equation x2 + x = 1 which has
G as its positive root. Therefore, G is the ratio of half the side
of the base square of the Great Pyramid to the altitude of the
face triangle. Checking with the actual measurements taken at
the Great Pyramid we have:

h = 148.2 m. (reconstructed height of undamaged apex)
b=116.4 m.

which makes

a=+1482% +116.42 = 188.4

and gives the ratio b/a = 0.6178 ---. Comparing with G = 0.6180

the difference is 0.0002 ---.

A further consequence of the statement of Herodotus is the
fact that G also appears as the ratio of the base to the lateral
area of the Great Pyramid. The sum of the areas of the four

15
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face triangles of the Great Pyramid is 4-(2a-b)/2 = 4ab. The
ratio of the areas is therefore

2
éb_zng
4ab a

The ratio G can be used to construct the form of the Great
Pyramid. In Figure 10 first the ground plan of the Pyramid has
been drawn. It is a square with its diagonals. Then the
elevation is drawn with the positions of the the base vertices

Figure 10B Construction of the form of the great pyramid

determined through vertical lines dropped down from the
corresponding points of the ground plan. What remains to be
drawn is the height of the Pyramid. The altitude of a lateral
face is (1/G)-b repeating the construction for G as described
before using b as a base, one obtains b-G. Adding b-G to b
furnishes b(G + 1) = b(1/G) = a. Using a as the hypoteneuse
and b as one leg of a right triangle, the length of the second leg
is the height of the pyramid h. thus the elevation can be
completed. The third projection (88888) has been obtained from
the ground plan and elevation through the methods of

16
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17
descriptive geometry, (described in the Mathematics Teacher,
April 1946).

In the sixteenth century (1509) Paciolo di Borgo wrote his
treatise DeDivina Proportione (Of the Divine Proportion) on the
ratio G. Kepler refers to it as the sectio divina (divine section)
and Leonardo da Vinci as seciio aurea (the golden section)
which is a term still in use for it. In an extensive literature on
The Golden Section numerous facts have been collected which
show its appearance in the forms of nature and art. Hambridge
based on it his aesthetic research on Dynamic Symmetry.
Kepler whose sense of proportional relations led him to his
three astronomical laws which are the starting point of modern
astronomy speaks of the properties of G in his “Mysterium
Cosmographicuam de  Admirable Proportione  Orbium
Celestium” as of those of one of the two “great treasures” of
geometry, the second being the Theorem of Pythagoras.
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Kepler’s Solid
and Other Construction Puzzles

Gerhard Kowalewski

Forward

The main object of this booklet is to build the Kepler solid
that is bounded by thirty plane rhombi; it can be found in the
polyhedra studies of the great astronomer. It is contructed out
of two sets of multi-colored blocks having ten blocks in each set,
which are joined together along like colors. They are similar to
MacMahon's cubes. This gives a new kind of branching game
that is associated with Kepler's thirty sided solid; we hope it
will attract interest because of its difficulty. A person who
would play successfully without knowing the theory would
have to be lucky.

There is a connection between Kepler's thirty sided solid
and a construction in 6 dimensions which is made up of
squares and which can be taken as the prototype of the Kepler
polyhedron: we are convinced that Kepler would have been
filled with enthusiasm to have known that this 6 dimensional
cube shelters two such Kepler polyhedra within it.

I want to express my debt to my brother, the Konigsberg
philosopher, an excellent scholar in the theory of color, for his
many valuable suggestions. 1 was able to speak with him
during his visit to Dresden in the Summer of 1937 about the
details concerning the publication of this booklet.

As with the previous booklets of the series that I have
established, the aim is to reach for a general understanding of
the subject.

Dresden, White Stag, Winter 1937/38

Gerhard Kowalewski
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CHAPTER ONE

Constructions with Multi-Colored Squares and Cubes

A square is divided by its diagonals into four right angled
triangles; let us color them with four different colors (red,
yellow, green, and blue, for example). These colors are
indicated in the Figure by 1, 2, 3, 4; there are six arrangements
of colors, counted so that those distributions of color which
amount to a mere rotation of the square are not to be counted
as distinct.

Figure 2 shows the six possible arrangements of the colors
1,2, 3.4,

N 7/
N1,
N s
2 X 4
7 \
AN
7 7 3 e
Figure 1
I I I
] 1 1
2 4 3 4 4 3
3 2 2
] 1 I
2 3 3 2 4 2
4 4 3
¥ Y i
Figure 2
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If we had at our disposal a single specimen of each of these
six multicolored tiles, then we could take up the following
problem. '

Build one big square out of four of these multi-colored
squares so that the large square has matching colors along the
top, bottom, right, and left sides. For example, we might
duplicate the edge coloring of Figure 1. The tiles should be
layed so that they obey what we shall call the domino rule,
that is, squares should only be joined along edges of the same
color.

The solution of the problem is easily obtained by looking at
Figure 3, where the unknown colors are indicated with the
letters a, b, ¢, d.

I 1
2 d d 4
a ¢
a { o
2 b b 4
3 3
Figure 3

It helps here to use the old mathematical trick of naming
the unknown. In the lower left hand tile a appears with 2 and
3, so it must be different from them: but also a glance at the
upper left tile shows that it must be different from 7 and 2. So
a can only be the color 4. For similar reasons b must be the
color 7, ¢ must be 2, and d can only be 3, so that the whole
construction looks like what is shown in Figure 4. This
procedure produces a big square having the same boundry
colors as those of Figure 1, using the four tiles displayed in
Figure 5. Colors which stand opposite each other in Figure 1
are neighbors in each tile of Figure 5. This observation fully
determines the choice of the four tiles.
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1 1

2 d | d 4
a c
a <

2 b | b 4
3 3
Figure 4

By turning them so that I is at the top, 3 will have to be
either on the right or the left. Either choice for the placement of
3 yields two choices for the placement of 2 and 4. With the
same four tiles one can obtain a big square, obeying the domino
principle, which shows the same edge colors as square VI in
Figure 2.

Figure 5

Instead of coloring the quarter squares , one could just as
well color only along the sides of the square, framing them in
color. The domino principle requires that only edges of like
color may be joined together.

MacMahon's building blocks imitate these problems but in
three dimensional space. In place of squares there are now
cubes whose faces are painted in six different colors. We shall
represent these colors by 1,..., 6; and as before we shall regard
two arrangements the same if they can be obtained from each
other merely by rotating the cube. Now, how many different
color arrangements are there? Suppose that the bottom face,
upon which the cube is standing, is colored with the color 1.
One of the colors 2,..., 6 must show on top. This gives five
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different possibilities. These five types depend on whether |
and2; Tand3; 1 and4; I and5; or I and 6, are opposite

Figure 6

each other. In the type in which | and @ are found on the top
and bottom respectively, one can always turn the cube so that
the color b comes to the front. That leaves three possibilities
for the color on the back side; and the two remaining colors can
be used in two ways (left and right, or right and left). Each of
the five types therefore has six multicolored cubes. The total
number of MacMahon cubes is 30, while there were only 6
different kinds of bordered squares.




30

In Figure 6 the 30 MacMahon cubes are shown
schematically as crossed axes. Each of the six arms of these
crossed axes reaches from the mid-point of the cube to the
middle of a cube face and is marked with the color number of
the cube face in its direction.

MacMahon's problem is this: build a big cube using eight of
his thirty cubes while adhering to the domino principle. This
big cube is to show a prescribed color distribution agreeing
with that of a model cube that was previously chosen.

If the pattern cube is, for instance, the first one shown in
Figure 6, then the eight cubes must show a pattern which can
be exploded as in Figure 7 to make it easier to see.

The color a in Figure 7 must be different from 7, 3, 5 and
also 1, 3, 6. So there remain only the possibilities @ =2 and
a = 4. When one of these two possibilities is chosen, the
remaining colors are obviously fixed and one comes to Figure 8
and Figure 9.

To make it easier for the reader to check on his own
drawing we have shown the order in which the absent colors
are found, through the use of subscripts. For example, in
Figure 8 it is 6; that is found first through the fact that this

color must be different from 1, 4, and 5. Next 4, is found

through the fact that among 1, 2, 3, 5, 6 only 4 is missing, and
SO On.

30




31
MacMahon's problem has two solutions (Figures 8 and 9).
By close observation one finds that in both cases the same
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eight cubes participate. The four cubes on the upper story of
one figure build the first floor of the other.
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I have proposed using a form of the crossed axes which are
quite handy for building. Compared to MacMahon's blocks the
use of crossed axes has the advantage that obedience to the
domino principle is easy to control. I glue six cubes of the same
size onto the faces colored I,..., 6 of the MacMahon cube; they
are the same size as the cube face to which they have been
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attached. Figure 10 shows such a cross in which, for the sake of
clarity, the front and back arms are left off and only suggested
by extended edges.

Figure 10

The first specimen of this very decorative toy was lost when
I sent it to a trade fair. It seems that the thirty multi-colored
crosses could not resist publicity and entered into the toy trade
quite on their own. There even appeared, in an illustrated
magazine, a picture of Shirley Temple playing with them.

For further information about MacMahon's blocks one can
refer to my book Alte und neue mathematische Spiele and also
to Ferdinand Winter's beautiful monograph on the multi-
colored cubes, both published by B.G. Teubner. The
mathematical, particularly the group theoretic, aspect of
MacMahon's problems have been treated by my ingenious
student Walter Stams in the latest edition of Deutschen
Mathematik.

There is a plane analog of my crossed axes of glued together
cubes; it is shown in Figure 11. The central square is mirrored
in all four sides to produce a cross.

Figure 11
32
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CHAPTER TWO

Rhombic Skirts for the Platonic Solids

The five Platonic solids - tetrahedron, cube, octahedron,
dodecahedron, icosahedron — were investigated by the ancient
Greek mathematicians and constitute the subject of Euclid’s
Elements.

These five solids acquired an unanticipated significance in
Kepler's Mysterium Cosmographicum (1596). he believed that
with their help he could establish a law of planetary distances
for the planets known at that time: Saturn, Jupiter, Mars,
Earth, Venus, mercury. The astronomers associated a sphere
with each of these planets; it was centered at the sun and
passed through its respective planet. One might wonder
whether or not the planets keep the same distance from the
sun, an idea that Kepler himself settled by discovering that the
planetary paths form an ellipse with the sun at one focus.
Kepler found in 1596 that the five Platonic solids could be
constructed between the six planetary spheres, so that each
such solid has its circumscribed and inscribed planetary
sphere. The specific sequence is: Saturn, (cube), Jupiter,
(tetrahedron), Mars, (dodecahedron), Earth, (icosahedron),
Venus, (octahedron), Mercury. Later when Uranus and
Neptune entered into the circle of planets this series attracted
less and less interest.

Kepler's planetary construction was very fruitful in
stimulating his geometrical research. He did extensive work in
the field of polyhedra studies and discovered, for example, the
star polyhedra. He had another very good idea too. He created
what I call the rhombic skirts for the five Platonic solids. Let
us fix the idea of this construction using the example of the
cube.

From directly above the middle of each of the six faces of
the cube one can drop a perpendicular to the cube edges having
some length, say h. Next, consider the cube edge AB. There
are two cube faces that meet there. Connect A and B to the
mountain peaks E, F situated along the perpendiculars. Doing
this creates triangles EAB and FAB. If h is given the appropriate
value (h = a/2), the triangles will lie in a single plane and will
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form a rhombus braced by AB on the diagonal. When we
construct the rhombus that belongs to each one of the twelve
edges of the cube, then we have a rhombic dodecahedron: We
shall say that it is obtained by dressing the cube in its rhombic
skirts.
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Figure 12

It is obvious in Figure 12 that EF = av2 , AB = a, so that
the edges of the original cube are the short diagonals of the
rhombic dodecahedron. The long diagonals form the edges of an
octahedron. The same rhombic dodecahedron serves as skirts
both for a cube and an octahedron.

In the same way, the rhombic skirts of an icosahedron and
those of a dodecahedron are the same things too. These skirts
fit together as thirty rhombi making Kepler's celebrated
triacontahedron; we call it Kepler’s solid. We will see later that
the diagonals of the rhombi introduced here are related to each
other in a golden section, that is they stand in the ratio

%5 - 1) to 1.

The triacontahedron was of extraordinary interest to Kepler
because two of them hold the earth sphere in his planetary
construction. The short diagonals of the thirty rhombi of
Kepler’s solid are the edges of a dodecahedron and the longer
diagonals are those of an icosahedron. Speculation about the
golden section, which Kepler called the divine section, exercised
a special charm for investigators who were predisposed to
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mysticism. The ancient Greek mathematician Eudoxus (400 to
350 B.C.) was the first to divide a segment according to the
golden section. One makes use of this division when, for
example, constructing a regular decagon. To find the edge
length of an inscribed decagon one needs to divide the radius of
a circle in a golden section. The larger piece gives the edge of
the decagon. The golden section is that division of a line
segment such that the whole piece is related to the larger part
as the larger part itself is to the smaller. Taking the whole
segment as unity and as the larger part, the smaller part will
be 1 - 2, so the following proportion holds:

liz=z:1-2.

From this it follows that 22 =1 -z or 22 =z + 1, giving (z + 14)2

=5/4, that is to say z = 1% (/5 - 1). This is therefore the length of
the larger part of a golden section division when the entire
segment has unit length. If we develop the irrational number

1% (5 — 1) a continued fraction, we write using 22 +z=1.

0 T S
g g L. gpece

1+2 Lot

1+z

From this it follows that z the irrational number of the golden
section, can be represented by the infinite continued fraction:

1
1
1

1+—1—-
1+...

1+
1+

which is the simplest possible continued fraction because it
involves only the number 1.

When one describes a circle of radius 1, then the continued
fraction given above will represent the side of an inscribed,
regular decagon. The sequence of convergants:
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shows the following rule which is based on the general
principles of the theory of continued fractions: In each fraction
the numerator is the sum of the two preceding numerators and
the denominator is the sum of the two preceding denominators.
For example,2=1+1,3+2+1,and3=2+1,5=3 + 2, and
so on. On the basis of this rule one can easily calculate the
sequence of convergants. After 1, 1/2, 3/5, 8/13, ... follow 5/8,
8/13, 13/21,... The number z lies between any two successive
terms of this sequence. The fractions of odd index

2 5

2 3 > 8

geeey

converge from below while those of even index

3 8

b 5 ’

1 8
2”5 1837

»

converge from above. It is a peculiar feature of the sequence

1 2 3 5 8

5 b 2

2° 3 5 8 13
that each denominator appears as the numerator of the next
‘term of the sequence. first you calculate the denominators q;,
49, q3, -.- by putting q; = 1, g3 = 2 and then using the rule q,, =
dn _1 T 4y — 9, once that is done the numerators p;, pg, ps, ... of
the fractions

» ‘] b b b

2’ 3 5 8 138

can immediately be written down using the rule p,, = q,, _ -
This gives the fractions 1, 1/2, 2/3, 3/5, 5/8, 8/13, ....
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Figure 13

In Figure 13 a Kepler rhombus is shown, that is to say a
rhombus whose diagonals BD and AD stand in a golden section
relationship to each other like the side of a regular decagon to
the radius of its circumscribed circle. If one were to draw a
circle having AC as its radius, then the span BD would go
around it exactly ten times. We will now derive a property of
the sharper of the two angles in the Kepler rhombus.
Obviously

tan(a/2)=z

where z is the number %(+/5 — 1). From this follows

2tan(a/2) = 2z
1-tan?(a/2) 1-2°

tana =

Because 22+ z = 1, we also must have that 1 — 22 =z, thus
tan(o) = 2.

To construct a Kepler rhombus having a given side AB erect a
perpendicular to AB, say BE, having double the length of AB
(Figure 13). Since tan(a) = 2, A will remain an angle of ABE of
measure a. Now make AD = AB and swing two circles about A
and B with a radius AB, these will intersect at A and also at a
new point C. The Kepler rhombus that we are looking for is
ABCD.
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Figure 14

It is vitally important that the reader have a cardboard
model of Kepler’s solid at his disposal. You can easily produce
one for yourself. In Figure 14 there are ten, articulated Kepler
rhombi that can be drawn on cardboard. You must cut out the
figures and score the edges that are shown as dark lines, in
order to fold them more easily. It is to be done so that in the
finished position the points I, 2, 3, ..., 10, I form a regular
decagon. Then the Kepler rhombi are inserted at the points
marked with heavy dots. Finally we must attach a cap made of
five Kepler rhombi to the top and bottom to close the openings.
This finishes the construction of Kepler’s tricontahedron. The
reader should interrupt his reading at this point in order to
finish the model without being hasty in the work.

Let us add a remark concerning the rhombic skirts of the
tetrahedron. It can be made plain from Figure 15 that this
gives a cube. The rhombi in this case turn out to be squares.

Figure 15

The same cube could equally well be taken as the rhombic
skirts of a second tetrahedron shown by dashed lines in Figure
15, and can be said to be the opposite of the one drawn with
solid lines.
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Coloring Kepler’s Solid

We will suppose that the reader has the cardboard model
that we have urged him to construct. If you place it on one of
its thirty rhombi, then at the very top there is a rhombus that
is horizontal and directly above the base rhombus. If we then
turn the model so that the long diagonals of these two rhombi
are running from front to back, the shorter ones running left to
right, then one of the thirty rhombi stands in front, one on the
very back, another on the extreme right, and one on the
extreme left. The planes of these four rhombi, along with those
of the top and bottom ones, form a cube with the base, as
before. Label these six rhombi all with the number 2.
Proceeding in this way until we reach the number 5, all thirty
rhombic faces of Kepler’s triacontahedron become labeled with
numbers. The six rhombi that make up a cube have the same
number.

Now the reader should obtain five colored sheets of paper.
Cut six Kepler rhombi that are of the same size as those on the
model of the Kepler solid out of each sheet. Glue a red piece,
for example, onto all faces with the label 7; those numbered 2
get, say, yellow pieces glued onto them; those numbered 3 get
green; all with a 4 get blue; finally make the ones numbered 5
white. In this way the Kepler solid gets colored with five colors
and presents a surprisingly beautiful appearance.

The Kepler solid has, resulting from its skirt relationship to
the dodecahedron and the icosahedron, 20 corners with three
edges, three way corners, and 12 of the five-way corners.
Surrounding each of these five-way corners the five colors I, ...,
5 are arranged in a specific way. Reading clockwise beginning
with white you get 12 different arrangements of the other
colors, and thus of the numbers I, ..., 4. On the model that is
here in front of me, I can determine the following 12 different
arrangements:

1234 2341 3214 4123
1324 2413 3142 4231
1243 2134 3421] 4312
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Each of them arises from the numbers 1, 2, 3, 4 by an even
number of transpositions, that is, exchanging the places of
some pair of numbers. If one interchanges two of the numbers
within the twelve arrangements, 1 and 2 for example, then the
twelve completely new orderings arise which, disregarding
changes in the listing, are as follows:

1432 2341 3214 4123
1324 2413 3142 4231
1243 2134 3421 4312

This now exhausts all 24 arrangements of 1, 2, 3, 4. One can
conclude from this observation that Kepler's triacontahedron
can be colored in two and only two ways with the colors 1,..., 5
so that the six rhombi belonging to the same cube share the
same color. A coloring that can be made to agree with another
by a rotation are not taken as different. This fact was already
observed by my brother in his work on color arrangements in
the Berichien der Wiener Akademie 11, May 1916.

It is very attractive to see both of the colorings together in
front of you. One would have to create two copies of Kepler’s
solid. If the reader is willing to take the trouble, he would have
acquired an attractive desk top ornament and a valuable model
to illustrate group theoretic relationships: all you would then
need is a friendly mathematician to teach you some group
theory.

Each of the 20 three-way corners of the Kepler
triacontahedron are colored with three colors a, b, c. There are
ten of these triads showing the five colors. Each triad appears
twice on opposite three-way corners but the opposite triads
have their colors in different cyclic arrangements as in :

a b a ¢
c b

Supplementary Geometric Observations

We still have to supply proof that the diagonals of a Kepler
rhombus stand in a golden section ratio to each other. In
Figure 16 two neighboring triangles of an icosahedron are
shown. ACB is half of a Kepler rhombus based on AB.
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Figure 16

The rhombus forms an angle o with both triangles so the
complete angle GDF is 2a, leaving a supplement of 2 needed to
make two right angles. That is « + B = n/2. When CE is the
perpendicular from C to ABF, then E will be the orthocenter,
giving

af3 _ a

6 V3’
where a is the side of the triangle. It follows from Figure 16
that

DE =

DE DE

cosa  sinf "

DC =

The following relationship holds for the diagonal relation of the
Kepler rhombus

DC _ 1
DA /3sinp

From this we see that B is half of the angle between two
neighboring planes of an icosahedron. To help in the
calculation of B one should now place a sphere of radius 1 about
one corner of the icosahedron. The five planes of the
icosahedron cut out a spherical pentagon whose sides equal =/3
and whose angles equal 2B (see Figure 17).
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Figure 17
It can be read from Figure 17 that:
cos(lg) = Uy sin(®lg) = Lgv/3
1/ = cos?A + sinZAcos(3™)

sinf _ sinA

sin(2n/5)  V3/2

The first equation now gives

sin?B = 3(1 — cos(2n/5) = 2/3(1 — cos(2n/5)) = 4/3 cos2(xn/5),
2
thus sinf = — cos(n/b).
B 73 (n/5)

From this it follows that E = —1—-
DA  2cos(n/b)

In Figure 18, cos(n/5) is marked with the long bracket. We can
see that cos(n/5) = (1 + 2). In view of the fact that z (1 +2) =
1, we obtain 2cos(n/5) = 1/z.

B o =GR = 1,
DA -

With that we have obtained the desired result. It would have
been possible to do so without the help of spherical
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trigonometry. We suppose that most readers are familiar with
the law of spherical sines and cosines. If that is not the case I
recommend that you look it up in my book Lehrbuch der
hoheren Mathematik published by Walter de Gruyter, 1933.

z
’
7 4

Figure 18

The famous psychologist Fechner, founder of experimental
psychology, concerned himself with the aesthetic properties of
the golden section and he has remarked that the most
attractive rectangle has its sides approximately in a golden
section section ratio: They are nearly % (/5 — 1) to 1. If you
separate a square off from such a rectangle than a rectangle
remains rectangle that is similar to the original. If we regard
the long side of the rectangle to be of unit measure, then the
short side is z. After removing the square the remaining
rectangle has sidesof 1 —zand z, andindeed 1 : z2::2: 1 - z.

z 1-Z

Figure 19

Figure 20 shows another remarkable property of the golden
rectangle, that is a rectangle whose sides are in the ratio z: 1.
Drop perpendiculars from two oppositely positioned corners
onto the diagonal that connects the other pair of opposite
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corners. These two perpendiculars are just as long as the
diagonal segment between the feet of the perpendiculars.

So we get that AC'AB = 22, CB-AB = 1. Making use of the fact
that AB = V1 + 22 , we obtain:

2
AC= =2 cB=__

V1+22 1+2°
L=

\/1+z2

z

2

This gives CD =AD - AC=CB-AC =

Furthermore EC2+ AC-BC, thus EC =

1+22

It follows from 1 — 22 = z that EC = CD. One might also appeal
to the fact, manifest in Figure 20, that tana =z and that

tan2a = 1
L C

Now make use of the fact that tan2a = 2 to conclude that EC =
CD.

The golden section appears in the regular pentagon as
shown in Figure 21.
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Figure 21

The three angles marked with a stroke are all equal to =/5;
using the theorem on inscribed angles we obtain

ABD : BCD = AB : BC.
On the other hand

ABD : BCD = AD-BDsin(n/5) : BD-CDsin(2n/5) = 1:2cos(n/b) =z : 1,

from which it follows that AB : BC =z : 1. This means that the
diagonal AC is cut in a golden section ratio by the diagonal DE,
and also naturally by DF. This gives that AD : EC = AB : BC, so
we have that AD : EC = z : 1. The sides and the diagonals of
regular pentagons stand in a golden section ratio. From this it
follows incidentally that the angle between the diagonals of a
pentagon, like the angle AFD of the figure is equal to /5.
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CHAPTER THREE

The Building Stone of Kepler’s Solids

If you examine the Kepler solid in five colors, then certain
specific building stones that are contained in it stand out on
their own. All you have to do is look at a corner at which three
edges meet to recognize a siubby parallelepiped that is
embedded in the Kepler solid. Three rhombic faces of this
parallelepiped meet at the three-sided corner at their obtuse
angles, so that they present the appearance that is given here.

Figure 22

We have indicated the back sides by dashed lines in Figure
22, so that the diagram shows the parallelepiped as it appears.
The colored rhombic faces of the parallelepiped that are on the
outside surface of the Kepler solid show three different colors.
We will use the same color for opposite rhombi, so that the
whole block is colored. It will have three of the five colors I, 2,
..., 5 distributed among its rhombic faces so that opposite faces
agree. Ten triads can be formed from I, 2, ..., 5 — they are
listed below — so there must be ten distinct colored blocks of
this kind.

123 I 2 4,

I25,
1 45, 2 3 4, 23 D

4, I'.3 5
9; 3 4 5.

These ten stubby blocks are, as will be shown, building stones
for the Kepler solid.

Besides these, there exist ten other parallelepiped shaped
building stones that do not stand out as clearly in the
completed model. These have a pair of opposite corners in
which the acute angles of the same rhombi meet. We call these
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building stones the steep blocks. They will be colored in the

same way as the stubby blocks.

We will see that the Kepler solid can be built up out of
these 20 colorful pieces, the ten stubby blocks and the ten steep

ones, under the rules of the domino
principle, so that the outside surface
shows the same pattern of colors as the
original. It cannot be shown that Kepler
himself recognized these facts in detail.
But we have to assume that he had
these 20 building stones out of which the
Kepler solid can be built. The coloring
and the use of the domino principle came
later.

The reader must now interrupt his
reading again to make these 20 building
stones out of cardboard with colored
paper glued on. The construction of the
Kepler rhombi has already been
explained. The acute angle of such a
rhombus fits into a right triangle whose
adjacent side is a and whose opposite side
is 2a. This property is the basis of the

Figure 23

construction. If you make this angle the vertex angle of an
isosceles triangle, you have half of the Kepler rhombus and you
can obtain the fourth corner by swinging arcs at the base

D &6

Cl
Figure 24
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vertices of the isosceles triangle whose radius is the length of
one of the legs.

Here is a different way to proceed with the construction.
Extend one side of the square ABCD, say CB, until its length is
doubled (Fig. 24). If you draw DC and make DC; = DM, then

DMB;C; is a Kepler rhombus. It is good to do the construction

carefully so that the stubby and steep blocks do not have gaps
between each other when you build up the Kepler solid out of
them.

If the reader has never
glued cardboard models and
does not know how to make a
parallelepiped, he can examine
Figures 25a and 25b. The first
one gives a net for the steep
blocks and the second one a net
for the stubby blocks. These
nets have to be drawn on
cardboard, cut out, scored and

Figure 25a

then folded along the dark lines.
Finally, edges having the same
numbers are joined and glued with
tabs.

However interesting the puzzles
that arise with these blocks, we do
not want to take the space here for
them. Besides, it is not at all bad to
leave the reader with some things to
work out for himself. Figure 25b

How to Construct the Five -way Corners Kepler’s Solid

If you take the colored model of the Kepler solid in hand
and look down at a five-fold corner, you see, reading from the
right, five colors I, 2, 3, 4, 5. These corners can be built with
the help of five steep blocks. If you want to make it
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comfortably, you need to make a saucer out of cardboard which
fits over the Kepler solid like a cap.

z(

Figure 26

You also need a cardboard cylinder with both ends open to
hold the saucers. A glass can be used instead. Put the saucer,
having the surface 1, 2, ..., 5, on the top opening of the cylinder
and lay five steep blocks having the colors 1, 2, ... , 5 on the
bottom on it. They will show the same colors on top; and they
are joined according to the domino principle. The reader must
now test what we say and build everything himself.

The appearance changes depending on which colors are
used to join the five steep blocks.

In figure 27 a general scheme is
suggested showing what can occur.
The block in area 1 of the saucer
and the block in area 2 join together

along the color a, the block on 2 and
3 with the color b, etc. Because the
single blocks carry the color triads
listed below.

Figure 27

]l ea 2ab 3bc 4 cd 5de

Thus the permutations of q,..e submit to the following
conditions:

a 1is different from I, 2
b is different from 2.3
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c is different from 3,4
d is different from 4.5
e is different from 5. 1. ¢

’

This offers the following possibilities:

O(h|wlQ
—~ O |N|T
N|—~[O|O
WIN[~]Q.
AfWIN]D

The five blocks make a cycle, so you must look at the
columns with a and e at the top as being neighbors. You will
notice by inspecting the table that each column has a number
in common with both of its neighbors. These values are special
when we have decided on the ordering a, b, c, d, e. Column a
has a 4 in common with its neighbors b and e; b has a 5 in
common with a and ¢; ¢ has a I; d the number 2; and e the
number 3. Because of this we will place the sequence q, b, ¢, d,
right after 4, 5, 1, 2, 3. The five steep blocks, which we want to
use for the production of the observed corner of the Kepler solid
carry the following color triads:

1 34 245 35 412 923

If you number the five flat regions of the saucers 1, 2, 3, 4, 5
going counterclockwise, then each number lies opposite itself,
that is united with the non-neighboring numbers of the triad.

Let us have 1, 2, 3, 4, 5 fall together with red, yellow,
green, blue, white; the reader has to search the following triads
to build the observed corner:

red green  blue
yellow  blue white
green  white red
blue red ~ yellow
white  yellow green

From this the reader will be able to build the desired corners
easily on the saucer. Observed from above it resembles a five
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pointed star with the color sequence red, yellow, green , blue,
white, reading counterclockwise.

Around the edges, guided by the domino principle, you can
fit in five stubby blocks. The third color will be determined by
the opposite sheet of the just mentioned stars. For example,
between the steep blocks

red, green, blue, and yellow, blue white
the stubby block green, white, blue, between

yellow, blue, white and green, white , red
blue, red, white, between

green, white, red and blue, red, yellow
white, yellow, red, between

blue, red, yellow and white, yellow, green
red, green, yellow, between

white, yellow, green and red, green, blue
yellow, blue, green

The colors red, yellow, green, blue, white will be cyclically
switched at each step, that means each one is replaceable by
the one following and the last one by the first one, thus red by
yellow, yellow by green, green by blue, blue by white, white by
red.

The first problem here has been the production of what is
built up out of these five steep blocks and five stubby blocks.
We built a type of cup. To tighten the model put a rubber band
around the whole thing. The rubber band will go across ten
vertical edges and the rhombi to which they belong. It takes
some skill to put on the rubber band.

Filling the Cup

If you look into the cup, it now offers the possibility of using
some of the remaining stubby blocks while respecting the
domino rule. You might have already used the red, green, and
blue stubby block, so that there are only two ways to continue
with another stubby block. If you settle on red, yellow, blue no
more stubby blocks can be fit in. If you really have done the
construction work, you can check for yourself.
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After filling in both stubby blocks — a red, green, blue one
and a red, yellow, blue one — we see a hollow in the middle of
the cup which invites the insertion of a red, blue, white steep
block. On both sides of the inserted block are valleys in which
a yellow, green, blue and also a red, yellow, green steep block
fit in. The next step is the insertion of a stubby block. Indeed,
you have a choice a between red, green, white one and a
yellow, blue and white one. we will choose the red, green and
white one. When this stubby block is added to your
construction, you will see clearly a bed for the green, blue,
white steep block and, after its insertion, a bed for the last
steep block: red, yellow, white. The stubby blocks yellow, blue,
white, and yellow, green, white can be accommodated without
having to think about how to do it. This completes the
construction of Kepler’s solid.

Six rubber bands are needed to hold the blocks together
because there are six families of parallel edges.

An Exact View of the Construction

If you pay attention to the way in which the twenty blocks
that make up Kepler’s solid come to the outside surface, you
can recognize the following in your model:

Nine of the ten steep blocks each contribute a rhombus to
the surface. One steep block lies hidden in the interior of
Kepler’s solid. Seven of the ten stubby blocks each provide
three rhombi at the surface: The other three remain latent
inside.

The twenty building stones of Kepler’s solid have,
altogether, 20 X 6 = 120 rhombi. Thirty of them supply the
surface of the solid. The ninety others must, in pairs, make up
the interior walls of the construction. Therefore each interior
wall is doubled. There are thus a total of 45 inner walls which
come apart onto the 20 pieces that make up the solid body. If
you put a window in each rhombus that lies on the outside
surface, the nine steep cells have only one window, the seven
stubby cells have three windows. Sixteen cells would therefore
take in light from outside. Four cells, one steep and three
stubby, would not get any daylight.
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The six bands around our building make a triangle around
each three sided corner of Kepler’s solid and a pentagon around
each five sided corner. Disregarding the corner points within
these triangles and pentagons, Kepler’s solid is made up of 12
pentagons and 20 triangles. If we consider projecting the solid
out from its center onto a circumscribed sphere, we obtain a
partition of the sphere into 12 pentagons and 20 triangles the
edges of which are all of equal length. They make great circles
that intersect each other in thirty points.

You can easily create this partition on a rubber ball if you
draw a great circle and then divide it into ten equal pieces.
The ten pieces of this great circle will have equilateral
triangles alternating up and down. The new sides of these
triangles give us five more great circles. You really need only
the triangles that point up. If you extend the left upper sides
into the great circles of which they are a part, you will easily
obtain a partition of the sphere. It is even easier to
circumscribe circles around neighboring upper and lower
triangles. This way you get ten of the twelve pentagons and
without difficulty obtain the as yet missing parts of the
partition. If you color the six great circles with different colors
there arises a beautiful six colored model on the rubber ball.
The following observation is of importance. You can arrange it
so that each band lies alternately above and below the other at
their junctions. The reader can test for himself that this rule
can be realized without any inconsistency, if he is willing to
construct for himself or to obtain such a colored ball. It hardly
needs to be said that these Kepler balls are something new an
offer a surprisingly pretty appearance.

Successive Views of the Kepler Ball

If you indicate the six colors which appear on the great
circles of Kepler’s ball with the numbers 1 through 6, so that
each of the 12 pentagons offers five numbers in cyclic order,
then the pentagon on the opposite side has the same numbers
taken cyclically in the reversed order. Each triangle shows a
triad taken from I,..., 6; while the opposite triangle has the
same triad but in the reversed order. Therefore, on the whole
ball you can read off six cycles of five numbers and ten cycles of
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three numbers each. On my model I find the following five-fold
cycles

24356 4536 4625,
V) {

12563, 3246: 2345.

and the three-fold cycles

(k)

123, 125, 136 45, 235
234 246 256 345, 124.

Twenty triads can be created out of six numbers. Ten of these
have been selected here. If you create the complement of a
triad consisting of the other three numbers, you will find

456, 346, 245 236 235
(k) {

156, 35, 134, 126, 124,

thus the missing triads appear.

The ten triads that were selected form an antipode-free
system (this expression is due to Arnold Kowalewski). Two
triads which together exhaust all six numbers are said to be
antipodal.

Figure 28




55

The ten distinguished triads in the list marked with a star
above, has the following property which can also be established
for (k) as well. We note that each triad @ b ¢ includes the
ordered pairs

ab, ac, and bc;

altogether there are thirty ordered pairs. These are all the
ordered pairs that be created out of I,..., 6, each written down
twice. Because of this property we call (%) a Steiner triple
system of the second order. A Steiner triple system of the first
order is also called simply a Steiner triple system. The Steiner
triple systems will not be used here. One such system must
consist of five triads within which all 15 ordered pairs made up
of I to 6 are contained. If 1 2 3 is one of these triads, there
would have to be another that contains the pair 7 4. We can
use 5 as a name for the new element that is different from I, 2,
3, and 4. Besides I 2 3 and 7 4 5 there cannot be triads
missing so that would cause 1 6 to be omitted. But the third
element cannot fall together with the numbers 2, 3, 4, 5. So we
come to an impossibility. It is not possible to build a simple
Steiner triple system out of 1 to 6, but as the example (k)
shows there is a Steiner triple system of the second order.

In figure 28 you can see the triads of the list (k) distributed
into two pentagons whose corners are related using connecting
lines. One is an ordinary pentagon and the other is a
pentagonal star. From each triad there are pathways leading
to three other triads, and indeed just to those triads that share
an ordered pair in common.

The system of rounds (}) stands in a simple relation to the
triad system (>k). Each round contains five triads which consist
of one element and its two neighbors in the round. The entire
six rounds deliver 30 such triads, and indeed the they are the
triads (<) written down three times each.

It is interesting to ask: how many different Kepler balls are
there? Switch two elements in the list (<), 1 and 2 for
instance. At the same time switch the two elements that are
combined into triads with 7 and 2: In this case it is 4 and 5, so
this gives
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125 123, 256, 234, 246,
145, 146, 136, 345, 356.

Therefore, it is the triad system (k), only in a different order.
The transposition that switches two elements a and b is
usually expressed by the symbol (ab). If @, b’ are elements
which in (k) appear as an ordered pair embedded in some
triad, then this system remains invariant under the switching
elements (ab) and (a’b’). In all there are 15 such switchings,
namely

(1235, U3)HR6), (4HG6), (1524, J6)349,
@34, 24H@E6), (2546, (26)45),

B4 25, @546, (36)()5),

45)(13), “6)12),

G6)(23).

With the help of the switchings in the first row you can bring
any of the elements 2, 3, 4, 5, 6 into the first position in place of
I, without altering the system (). When ! is held fixed this
brings to our attention the switchings

24 (36), (26)45), @425, @56, ©G6)23I.

With the help of these switchings you can steer any of the
elements 2, 3, 4, 5, 6 into the position of 2. Once | and 2 are
fixed, there remains only the switching (3 5)(4 6); that is, you
can exchange 3 and 5 in the triads they form with 1 and 2, and
also exchange 4 and 6 without changing the system (k).

Are there other switchings of the numbers 3, 4, 5, 6 that
leave the system (<) unchanged? Since 3 and 5 and also 4 and
6 have to be permuted with each other, it only remains to
check whether (3 5) and (4 6) separately will leave the system
unchanged. Neither does. For example, (3 5) and (4 6) act on
the triad 7 3 6 to give 1 5 6 or 1 3 4 respectively: These are
triads from the system (>k>k). Apart from the identity, which
leaves everything in place, there is only one switching of 3, 4,
5, 6 that leaves the system () unchanged, namely (3 5)(4 6).

Altogether there are 1-2-3-4 = 4! = 12 different switchings that
can be carried out on the numbers 3, 4, 5, 6, so there are 12
systems that arise from by switching its elements. We have
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made use of a theorem of group theory that has been known for
a long time.

You can check what has been done by thinking as follows:
Along with the ordered pair 1, 2, the additional pair 3, 4, or 3,
5,0r 3, 6, or 4, 5 or 5, 6, will appear within a triad. That
makes six possibilities. Each time there are two different
systems that are transformed into each other when the
elements that are in triads with 7 and 2 are switched with each
other. For example the system (*) changes into the following
new system when 3 and 5 are switched:

125 123, 156, 134, 246,
245, 146, 236, 345, 356.

The new triads are underlined.
The answer to our question therefore, is that 12 different
Kepler balls can be created with six colors.
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CHAPTER FOUR

Games Played with Thirty Little, Colored Men and
Roots with Kepler’s Solid

Upon reflection a lot can be said about Kepler’s solid that
we made out of twenty blocks and bandaged together with six
colors in order to hold the building stones together. We already
recognized that each band can be arranged in a handy way
with crossings going alternately over and under. On each of the
rhombic faces, the reader needs a model in hand, two bands
cross, one on top and one beneath. Let us chose the colors

black, red, yellow, green, blue, white

for these bands. On each rhombus, one color is on top and one
on the bottom. The top color is the color of the band that goes
above and the bottom color is the color of the band that is
beneath. If you name the colors I, 2, 3, 4, 5, 6, then each
rhombus has a top number a and a bottom number b. This
gives an ordered pair a b. thirty ordered pairs can be formed
from the numbers I to 6. Any of the six numbers can occupy
the first position and after it is seated any of the remaining five
can occupy the second position. These thirty ordered pairs of
six objects are distributed on the thirty rhombic faces of
Kepler’s solid. On neighboring faces, that is, those sharing a
common edge, there are pairs of the form a b and ¢ a, in which
a, b, and c represent three distinct terms of the sequence I, 2,
3,4, 5, 6. The band that passes over the common edge of these
two rhombi is a: it is on the top at one face and on the bottom
at the other. The two ordered pairs have, as we see, an element
in common but it takes the first position in one ordered pair
and the second position in the other; this weakens the domino
character of the neighborhood. You couldcalla b ,acor b a, ¢
a a strong domino junction and @ b , ¢ @ a weak domino
junction. The thirty ordered pairs made out of 1, 2, 3, 4, 5, 6
are distributed over the rhombi of Kepler's solid so that
neighboring pairs stand at a weak domino junction. This
distribution will be given more attention. My brother, the
founder of systematic color theory, an extraordinary deep theory
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with rich connections to practical questions, calls this
distribution a colonization. _

You can pose a colonization problem whose solution is found
in the reasoning given above: the thirty ordered pairs formed
from I, 2, 3, 4, 5, 6 have to be distributed on the faces of
Kepler’s solid so that neighboring pairs are connected according
to the weak domino principle.

Figure 29

This colonization can be represented in a plane diagram
because the resulting distortion does not change the nature of
anything. Figure 29 shows a regular dodecahedron that has
been pressed flat. the small pentagon lies on the big one like a
sheet and the and the large pentagon is merged with the edges
of the entire figure. If you were to blow this up as if it were an
airtight bag, it would pop out as a figure in space resembling a
regular dodecahedron. We know that Kepler’s solid consists of
the rhombic skirts that are shared alike by the regular
dodecahedron and icosahedron alike. We can do this with a
distorted dodecahedron just as well as a regular dodecahedron:
but we have to be satisfied with representing the rhombi as
quadrilaterals. Choose a point on each face of the distorted
dodecahedron and connect it with the corners. When you take
away the edges of the dodecahedron, there will be a distorted
Kepler solid.

This construction is carried out in Figure 30. The
dodecahedron edges are still visible as dashed lines. The point
within the large pentagon that makes a basis for the figure has
been thrown to infinity. We have to think of straight lines
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going to infinity from the corners of the large pentagon. It is
though we were taking here a sphere to be a plane of infinite
radius. The point at infinity is the point that is opposite the
center point of the diagram.

Figure 30

If you pay attention only to the dark lines and think away
the dashed lines, you can see the plane divided into thirty
quadrilateral areas, from which five lines go out to infinity.
these thirty quadrilaterals will do for the colonization problem
instead of the rhombi of Kepler’s solid. In figure 31 you can see
the ordered pairs taken from I, 2, 3, 4, 5, 6, the ordered pairs

* 12, 13 14 15 1:6,
21, * 23 24, -25 2¢6
3l 32 * 34, 35, 36
41, 42, 43 * 45 406,
51, 52, 53 54 * D.0;
6:1, 62, 63 64, 65 *

placed into the thirty regions of the diagram according to the
weak domino principle.

If you want to make a game out of this colonization
problem, you replace the ordered pairs with little men: in the
pair a b, a represents the color of his pants and b the color of
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his jacket. The thirty colored men are to be distributed on the
regions of the game board so that two men in neighboring
regions have a color in common on the same type of clothing.
The common color makes a kind of neighborhood connection
between them but it comes out in different ways. The pants
color of one is on the jacket of another, so each little man,
looking across his four boundries, can say with satisfaction that
no neighbor is exactly like himself. If he has, for example, red
pants and a blue jacket, then two neighbors have red jackets
but not blue pants and the other two have blue pants but not
red jackets. Every little man is special, different from his
neighbors.

Figure 31

In the colonization game you can put, for example, two men
that do not share a common color down onto regions that meet
at a corner: then, using the principle of weak domino junction,
go on with the colonization. In Figure 32 you can see one of
these beginnings. Into the region marked with a star, that
bounds the regions that have already been used, comes a diad
a b which is related to both | 2 and also 3 4 by a weak domino
junction. To connect itself in the right way to I 2, it has to be
either a I or 2 a. The diad a | connected in the previously
described way to to 3 4 when a =4 and 2 a is connected when a
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= 3. Therefore the region % must either be filled with 4 T or 2
3. If you choose 4 1, then the diad 2 4 definately goes into the
region %k %. If you were to choose 2 3, you will have to fill in
%% with 3 1. The same certainty will arise for filling in the
region %% %. We shall leave it to the reader to finish the game
board colony. That is the best way to get involved in the whole
thing.

Figure 32

If you are a daring player you can choose more than a two-
fold beginning originally and the see whether you can still play
all the little colored men. Even if not all of them have been
used, you still might play a large enough number of them that
you are not embarassed to show it to.someone. This number
could be considered as your score for the game. To players can
take turns trying their luck. Add up the scores compare the
totals at the end.

Anyone who knows the theory can solve the colonization
problem if nothing is showing in the beginning. You can solve
it easily by picking out a ring of ten regions corresponding to
one of the six bands around Kepler’s solid. Each region of one
of these rings contacts the ring of its neighbors along two
opposite edges. In Figure 33 a ring is shown using boldfaced
lines. You can begin to fill the regions of this ring with the
diads 12,13,14,15,16.0n the opposite sidesput2 1,31, 4
1,51, 6 1. The only thing that can go into the region the
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bounds I 2 and 5 I, for example, is the diad 2 5; only 3 5 can
touch 5 T and I 3, etc. The regions bordering the ring can be
settled in this way. Ten of the five-way corners will be missing
a diad which is then forced by the demands of the weak domino
junction rule with regard for the diads that have already been
used. The reader can check this by continuing the columnsthat
have been started in Figure 33.

Figure 33

If you consider diads to be made of the numbers 0, 1, 2, 3, 4,
5 instead of 1, 2, 3, 4, 5, 6 and make the number 6A + B
correspond to the diad A B, then the numbers that are obtained
are all different. If would follow from

6A+B6=A"+B’
that 6(A-A)=B-B'

It would follow that B — B’, a difference of two numbers taken
from the sequence O, I, 2, 3, 4, 5, is a multiple of 6. That is
possible only if B — B’ = 0. It would follow immediately from this
that A— A’ =0. As long as the diads A B and A’ B’ are distinct,
it cannot be that the equations A = A’ and B = B’ hold
simultaneously. So when the diads A B are substituted into the
expression 6A + B, thirty different numbers are obtained. The
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smallest is 60 + 1 = 1: The largest is 65 + 4 = 34. The numbers
of the form 6x + x, that is 7, 14, 21, 28, the multiples of 7, are
~ not included. The following 30 numbers remain:

1, 2, a 4, 5, 6,

8, 9, 10, i, 12, 13,
15, 16, 17, 18, 19, 20,
22, 23, 24, 25, 26, o,
29, 30, 31, 32, 33, 34.

If you have a Kepler solid that is not colored and ordered diads
made up of numbers O, I, 2, 3, 4, 5 are spread out over the
thirty rhombi, then by substituting the number 6A + B for the
diad A B, the thirty numbers in the above table will be marked
onto the rhombi. Kepler solids of this kind can be used as dice.
To actually do that, they would have to be made out of wood or
porcelin. This solid is much closer to a sphere than a cube is. It
rolls easily across a table. However it stops, there is a number
showing on the top face which can bbe read as the outcome of
the throw. You could have twelve such dice numbered
differently corresponding to the twelve different Kepler balls.
They originate from the sequence given in the preceeding
trable, and eventually will coincide with it. There are many
possibilities here for working with the game rules, but we do
not want to go into that now. There are also interesting
problems for probability calculations.
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Chapter Five

On the Rhombic Dodecahedron

The rhombic dodecahedron has, as we have learned, the
same rhombic skirt as the cube and octahedron. You can also
see it as an exception to solid bodies in general, we will now
turn to its construction.

To get involved better into the nature of the situation, we
want to treat a similar construction. Consider a parallelopiped,
or as we prefer to say a block, lying in space. From a corner of
this block go three line segments AB, AC, and AD. If we put
them together in pairs like forces in the construction of the

parallelogram of forces, that is, each line segment is brought to
the ends of the others by a parallel translation, giving the six
line segments BC,;, BD;, CD,, CB,, DB;, DC;. We slide the
original line segments to their endpoints as well an obtain in
this way the three edges ByA;, C1A;, D;A;. In this way all

twelve edges of the block are derived from the three basic line
segments AB, AC, AD. If you project the block onto a plane by a

parallel projection (in Figure 34 it is the plane ABD) there
arises an image of the block in the plane.

B, A,
d i
! :
] 1
T 2
vl R
¥l bGl b
1O A,
) B, ’ A
- B
A ;
c' D,
Figure 34

In this plane image everything is derived from the three
basic line segments AB, AC’, AD in exactly the same way as in

the spatial construction. If you leave out the line segments
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going from A and A’ there remains the hexagon
BC,DB,'CD;'B, the projection of the hexagon BC,DB,CD,B,

consisting of those six edges of the block that do not go to either
of the two opposite corners A and A;.

Using this construction we can design, in our ordinary
space, the image of a four dimensional block in which we lay
down four basic segments AB, AC, AD, AE and take them
together in pairs, triples, and then four at a time as shown in
Figure 35. You can carry out the construction so that you get a
block out of the triples

X%, AC, AD, AL
AB, ¥, AD, AE
AB, AC, X, AL
AB, AC, AD, *

you will obtain a block and then put together all four line
segments. This means that the four points Ay, Ay, A3, A4 that
are all opposite to A in some block translate to give the missing
edges. These line segments all meet at the point A’.

In Figure 36 we see a cube whose center A is connected by
segments AB, AC, AD, to four of the cube corners. These
corners are so chosen that no two have an edge in common.
These four named segments are obviously of the same length
and between any two of them they form the angle 2a such that
tan o = V2. You indicate this, it reminds us of an irminsul, by
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the very important regular figure of four legs joined together at
their ends.

Figure 36

If you use these four legs for the construction given above,
then the points A and A’ will coincide ( as in Figure 37).

Figure 37

If you make a change in Figure 35 by leaving out the lies
that come from the points A and A’ ,then you have a
parallelogram dodecahedron in front of you, so the rhombic
skirts of the cube are a special case. The parallelogram
dodecahedron arises from a four dimensional block through
removing two opposite corners with their attached edges and
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then carrying out a parallel projection onto one of the infinitely
many three dimensional spaces that play the same roll in four
dimensions as planes do in three dimensions. Therefore the
parallelogram dodecahedron is the spatial analog of the planar
hexagon.

You see the parallelogram dodecahedron in the right light
when you think of it in connection with a four dimensional
block. We can see it as having its origin in four dimensional
space , from a four dimensional block whose opposite corners
have been removed with their attached edges. The four
dimensional block has sixteen corners. Four edges go out from
each corner, uniting in pairs and making six parallelograms.

Altogether their are 16-6 parallelograms. Each of them will be
counted four times however, because they have four corners.
So the total number of these parallelograms in a four
dimensional block is 1(1'—6 or 24. We have pressed two opposite
corners with their attached edges down underneath it all, so
the six parallelograms that belong to them will be removed too.
The twelve parallelograms that remain can be seen in the
parallelogram dodecahedron.

The Source of the Rhombic Dodecahedron
in Four Dimensional Space

The four dimensional origin of the rhombic dodecahedron
can be seen by envisioning a cube in four dimensional space
and then removing two opposite corners along with their
attached edges. Only twelve of the 24 squares of this cube will
remain. They present us with the four dimensional origin of
the rhombic dodecahedron. The rhombi are congruent squares
in this case. If an inhabitant of four dimensional space looks at
this structure from a distance, along the line that connects the
two opposite corners that were removed, he sees the rhombic
‘dodecahedron as a three dimensional figure, thus in an entirely
different way from the way that we see it. This viewer
experiences, so to speak, something similar to what we
experience when we look at a cube from a distant point along
the line connecting two of its opposite corners, with the edges
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that attach to those corners made invisible. The picture that
this offers to us is that of a regular hexagon. It is the
projection of the remaining six cube edges onto a plane vertical
to our line of sight.

Since we cannot look into a four dimensional space as we do
our usual space, we need to depend on the analytical methods
of Descartes for the treatment of geometrical questions in four
dimensions. It is like Braille which offers a substitute for
vision. In ordinary space a point is indicated by three
Cartesian coordinates x, y, z in connection with three
perpendicular axes. If you want to fix a specific cube, you have
only to give the coordinate triples of its eight corners. If, for
example, the coordinate triples

0,0,0 1,0,0 0,10 0,0, 1
0,1,1 10,1 1,1,0 1,11

3

are written down, then you have to do with a cube that is
supported by the three positive axes and has edges of length 1.
The corresponding body in four dimensional space, where there
are four rather than tree coordinates, has the corners:

0,0,0,0
1,0,0,0 0,1,0,0 0,0,1,6 0,001
1,100 10, 10 1.0, 0,1
0,0, 1,1 0,1,0,1 0,1,1,0
0 1; 1.1 L0, 11 1,1,0,1 1,1,1,0
1, T, 1, 1

If you now remove the opposite corners 0, 0, 0, 0 and 1, 1,
1, 1, there remain the corners of the 12 squares that build up
the structure which we call the four dimensional source of the
rhombic dodecahedron. The endpoints of an edge always have
coordinate quadruples that differ in only one position, the other
terms agreeing. So the corners of a rhombic dodecahedron in
our space can be given the 14 labels

1 0,0,0 0; 1,:0,:0 0,0,1,0 0;0,0,1
(k) 1,1,0,0 1,0,1,0 1,0,0,1
0011 0,1,01 0 ds 1,0

0,1,1,1 1,0,1,1 1,1,0,1 1,1,1,0

-
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Here the endpoints of each edge carry labels that differ only in
one term, thus as little as possible, or, as we like to say, they
stand in a strong domino junction.

Figure 38

Figure 38 shows a plane representation of a rhombic
dodecahedron that comes out of the cube that is shown in
dashes. The midpoint of the big square is thrown to infinity,
understood as the point toward which all four of the rays in the
figure are heading. The 14 corners here need to given the
labels (k) with the strong domino principle in control along
each edge.

Whoever knows the source of this net in four dimensional
space will be able to solve the problem without difficulty. The
edges of the original object, which are all edges of a four
dimensional cube, fall into four classes, each made up of six
segments parallel to one of the four coordinate axes. The same
grouping applies to the lines in the net of Figure 38. If you
realize that in the original object, edges that go out from one
corner belong to different classes and on the opposite point to
the same class, then it is easy to write down numbers 7, 2, 3, 4
representing these classes in Figure 38. You would start by
numbering the lines going out from the center of the picture
somehow with the numbers I, 2, 3, 4 and as you proceed with
the numbering you go along with the rule that squares that lie
opposite get the same class numbers. Figure 39 shows a
completed numbering of this kind.
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Figure 39

Now you have to think that running along an edge of class
a, that is at the transition from one end to another, only the ath
term of the corner label will change, while the other terms
remain the same. If you picture this to yourself, you can say
that the labels 1, 0, 0, 0 and 0, 1, 1, 1 cannot possibly stand on
corners linked by a line of class I. The other end of such a line
would have to be either 0, 0, 0, O or 1, 1, 1, 1. But these labels
are not available. Likewise, 0, 1, 0, 0 and 1, 0, 1, 1 cannot go
on corners that emit a number 2 line. The corresponding thing
holds for 0,0, 1,0and 1,1,0, 1, aswellas 0, 0,0, 1 and 1, 1, 1,
0. The eight labels that have been enumerated, and thus also
the eight intersections in question, emit only three lines.

1010 1070

1070 rolo

Figure 40
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With this remark in hand we may partition the labels
without any difficulty, as the reader can test for himself
(Figure 40). If you stow away 1,0, 0,0and 0, 1, 1, 1, as can be
done in two different ways, it puts a further constraint on the
labels because the class number of the edges always specify
which term must be changed along such a line.

When the class numbers of the
lines are not given, it is not so easy to
stow away the labels especially for
someone who doesn’t know the secret
of these net diagrams. To make a
game out of it you replace the four
termed sequences with little, white
towers that have four bands going
around them that are either black or
red. For example, instead of the label
1, 0, 1, O there is a tower having the Figure 41
colors red, black, red, black going in order from the top to the
bottom (Figure 41). Now you start occupying the thirteen
circles in Figure 42 according to the strong domino principle so
that the towers that are connected by lines differ on only one of
their rings. When thirteen positions are occupied, there is one
tower left over.

Figure 42

You can set up the game so that this king without a country is
taken out of the game right in the beginning. If you choose the
wrong one, you can’t get the towers stowed away. The tower
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that is excluded must have two red bands and two black bands.
That is the big secret. The game loses its appeal when people
know that. Pure pleasure can only be found by a childish soul
who is removed from the theory. When the towers cannot all
be stored, you can still give points for correctly played towers.

Four Bands Around the Rhombic Dodecahedron

The rhombic dodecahedron is, as we have often pointed out,
a parallel projection of a four dimensional original into a three
dimensional space. Parallel lines remain parallel in the
projection. From this it follows that the rhombic dodecahedron
in our space has four classes of edges each of which consists of
six parallel segments in the original. You can verify it with one
glance at a rhombic dodecahedron, it shows in Figure 37 too.

Now we want to put two altitudes through the middle point
of each rhombus perpendicular to the sides (Figure 43) and
give these altitudes the same class number as the sides to
which they belong. Six of these altitudes carry the number 7,
six carry the number 2, and so on. The altitudes with the
number o stuck on them make a band around the rhombic
dodecahedron; and an entire class of edges, the class a, goes
across them.

Figure 43

You can substitute four colors, red, yellow, green, and blue
for instance, and give the bands a suitable width. If you color
the whole rhombic dodecahedron black, it produces a model
that makes a strongly aesthetic impression. Just as with the
bands that surround Kepler’s solid, you can arrange the bands
so that they pass alternately over and under each other at
their six junctions. On each of the twelve rhombi we have a
top band @ and a bottom band b. Let us return to using the
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numbers 1,2, 3, 4 and write the number of the top band in the
first position and the number of the lower band in the second
position, thus making ordered pairs out of the numbers 1, 2, 3,
4. These ordered pairs

X, 12, 13, 14,
2, X, 23, 24,
3t 32 X, 34,
41, 42, 43 *

are spread over the twelve faces of the rhombic dodecahedron
in such a way that the pairs that stand on neighboring faces
always have an element in common, but it is in the first
position of one pair and in the second position of the other. We -
call this relation, which also comes to us in the Kepler solid,
the weak domino junction. If you want to carry out a
colonization of the surfaces of the rhombic dodecahedron using
ordered pairs with the elements I, 2, 3, 4 according to the weak
domino principle, you can start by putting the pair 7 2 on any
of the fields. The adjoining pairs 2 3, 2 4, 3 1, 4 1 will be
distributed among the four neighboring fields. These four
fields can be seen to have equal status by rotating and
reflecting the rhombic dodecahedron.

Il
[

Figure 44

So the pair 2 3 could go on any of these four faces. Once that is
done the positions of the remaining three are uniquely
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determined. This shows how the course of further colonization
is forced. The result can be seen in Figure 44. Allowing for
rotations, the whole thing has two colonizations of the desired
kind: Figure 44 and its mirror image. As with Kepler’s solid,
you can make dice by replacing the ordered pairs on the faces
of the rhombic dodecahedron with numbers. For this purpose
it is advisable to use the numbers 0, 1, 2, 3 instead of 1, 2, 3, 4
and change the pair a b into the number 4a + b. In place of the
pairs

*, 01, 02, 03
10, *, 12, 13,
20, 21 X, 23,
30, 31, 32 %

there stands the numbers

*, 1, 2, 3
4, *, 6, 7
8 9 *, 11,

12, 13, 14 %

You will obtain two dice this way because there are two
colonizations, not counting rotations. Because there are twice
as many faces as there are on the dice of the usual kind, games
played with rhombic dodecahedral dice offer more excitement.

If you project the four bands which we put around the
rhombic dodecahedron outward from the center of the solid
onto a circumscribed sphere so that four band-like great circles
arise. They divide the sphere into six quadrilaterals and eight
triangles. You may paint these bands on the sphere in such a
way that each of them goes alternately over and under at the
six junctions that it has with the other three. The actual
construction, on rubber balls for instance, will not present the
reader with difficulties. The two four color balls that are
obtained will give all the more satisfaction because they cannot
be bought anywhere.

The fourteen fields of such a sphere partitioned into six
quadrilaterals and eight triangles correspond to the corners of
a rhombic dodecahedron. Thus, the previously considered
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colonization of the corners of the solid with four termed labels
consisting of zeroes and ones allows us to see the partitioning
of the sphere into triangles and quadrilaterals as a field
colonization as well.

Construction of the Rhombic Dodecahedron out of Four
Blocks

If you think back on the construction of the rhombic
dodecahedron out of regular four legged pieces and glance
again at Figure 37, you will see four blocks out of which the
solid rhombic dodecahedron can be made. Any three of the four
legs makes a solid corner into which one of the four blocks can
fit. The reader may build these four blocks out of cardboard.
They are bordered by three rhombi whose diagonals are in the

ratio 1:+/2. The blocks that are involved are clearly the stubby
ones.

If you number the legs of one of these four legged pieces
with I, 2, 3, 4, you can number the four blocks with the triads

2, 34 1,34 1,2.4; 1,2, 3

the block 2, 3, 4 fits into the solid corner with the legs 2, 3, 4 so
that three of its edges lie along the just mentioned legs. If you
color the legs of the four legged piece, using for example red,
yellow, green, and blue, then you can color red the edges of the
block that are parallel to a red leg, and likewise the edges that
are parallel to a yellow edge can be colored yellow and so on.
carry out this coloring of edges so that the colors shows on both
of the adjoining faces without making too small a colored strip.
Three edge colors are used on each block. Around the block
with red, yellow, and green going out for example, you will next
paint the edge stripes that go out from an obtuse corner where
three obtuse angles of the rhombi meet. It does not matter in
which order you take the colors because, when you color
according to the rule, the colors are cyclically reversed on the
opposite corner. The blocks look very beautiful when you take
black as the background color, or glue on black matte paper.
Joining the blocks together to make a rhombic
dodecahedron is easy because you know, for example, that the
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red, green yellow block must rest itself on the red, yellow,
green leg of the four legged piece, which, by the way, does not
need to really exist. All four blocks match with four legged
pieces at obtuse angles. The reader should convince himself
how easy it is to join the four blocks together. To keep the
construction together wrap a rubber band around each set of
six parallel edges. These four rubber bands cause the
previously mentioned division of the surface into eight
triangles and six quadrilaterals stand out clearly. It is very
beautiful if you use rubber bands that are colored like the
edges that they cross.




NOTES

CHAPTER 5

irminsul see Hans Gsénger Mysteriensttten der Menschheit:
Die Externstein verlag die Kommenden Frieburg , 1964

the irminsul is a tree of life symbol found in northern
germany with runes. It seems to be a mixture of extra-Roman
Christianity along with pagan elements. Odin was tied to a
tree for nine days by the giants.






